Evaluating deep transfer learning for whole-brain cognitive decoding

Overview

Evaluating deep transfer learning for whole-brain cognitive decoding

This README file contains the following sections:

Project description

This project provides two main packages (see src/) that allow to apply DeepLight (see below) to the task-fMRI data of the Human Connectome Project (HCP):

  • deeplight is a simple python package that provides easy access to two pre-trained DeepLight architectures (2D-DeepLight and 3D-DeepLight; see below), designed for cognitive decoding of whole-brain fMRI data. Both architecturs were pre-trained with the fMRI data of 400 individuals in six of the seven HCP experimental tasks (all tasks except for the working memory task, which we left out for testing purposes; click here for details on the HCP data).
  • hcprepis a simple python package that allows to easily download the HCP task-fMRI data in a preprocessed format via the Amazon Web Services (AWS) S3 storage system and to transform these data into the tensorflow records data format.

Repository organization

├── poetry.lock         <- Overview of project dependencies
├── pyproject.toml      <- Lists details of installed dependencies
├── README.md           <- This README file
├── .gitignore          <- Specifies files that git should ignore
|
├── scrips/
|    ├── decode.py      <- An example of how to decode fMRI data with `deeplight`
|    ├── download.py    <- An example of how to download the preprocessed HCP fMRI data with `hcprep`
|    ├── interpret.py   <- An example of how to interpret fMRI data with `deeplight`
|    └── preprocess.sh  <- An example of how to preprocess fMRI data with `hcprep`
|    └── train.py       <- An example of how to train with `hcprep`
|
└── src/
|    ├── deeplight/
|    |    └──           <- `deeplight` package
|    ├── hcprep/
|    |    └──           <- 'hcprep' package
|    ├── modules/
|    |    └──           <- 'modules' package
|    └── setup.py       <- Makes 'deeplight', `hcprep`, and `modules` pip-installable (pip install -e .)  

Installation

deeplight and hcprep are written for python 3.6 and require a working python environment running on your computer (we generally recommend pyenv for python version management).

First, clone and switch to this repository:

git clone https://github.com/athms/evaluating-deeplight-transfer.git
cd evaluating-deeplight-transfer

This project uses python poetry for dependency management. To install all required dependencies with poetry, run:

poetry install

To then install deeplight, hcprep, and modules in your poetry environment, run:

cd src/
poetry run pip3 install -e .

Packages

HCPrep

hcprep stores the HCP task-fMRI data data locally in the Brain Imaging Data Structure (BIDS) format.

To make fMRI data usable for DL analyses with TensorFlow, hcprep can clean the downloaded fMRI data and store these in the TFRecords data format.

Getting data access: To download the HCP task-fMRI data, you will need AWS access to the HCP public data directory. A detailed instruction can be found here. Make sure to safely store the ACCESS_KEY and SECRET_KEY; they are required to access the data via the AWS S3 storage system.

AWS configuration: Setup your local AWS client (as described here) and add the following profile to '~/.aws/config'

[profile hcp]
region=eu-central-1

Choose the region based on your location.

TFR data storage: hcprep stores the preprocessed fMRI data locally in TFRecords format, with one entry for each input fMRI volume of the data, each containing the following features:

  • volume: the flattened voxel activations with shape 91x109x91 (flattened over the X (91), Y (109), and Z (91) dimensions)
  • task_id, subject_id, run_id: numerical id of task, subject, and run
  • tr: TR of the volume in the underlying experimental task
  • state: numerical label of the cognive state associated with the volume within its task (e.g., [0,1,2,3] for the four cognitive states of the working memory task)
  • onehot: one-hot encoding of the state across all experimental tasks that are used for training (e.g., there are 20 cognitive tasks across the seven experimental tasks of the HCP; the four cognitive states of the working memory task could thus be mapped to the last four positions of the one-hot encoding, with indices [16: 0, 17: 1, 18: 2, 19: 3])

Note that hcprep also provides basic descriptive information about the HCP task-fMRI data in info.basics:

hcp_info = hcprep.info.basics()

basics contains the following information:

  • tasks: names of all HCP experimental tasks ('EMOTION', 'GAMBLING', 'LANGUAGE', 'MOTOR', 'RELATIONAL', 'SOCIAL', 'WM')
  • subjects: dictionary containing 1000 subject IDs for each task
  • runs: run IDs ('LR', 'RL')
  • t_r: repetition time of the fMRI data in seconds (0.72)
  • states_per_task: dictionary containing the label of each cognitive state of each task
  • onehot_idx_per_task: index that is used to assign cognitive states of each task to the onehotencoding of the TFR-files (see onehot above)

For further details on the experimental tasks and their cognitive states, click here.

DeepLight

deeplight implements two DeepLight architectures ("2D" and "3D"), which can be accessed as deeplight.two (2D) and deeplight.three (3D).

Importantly, both DeepLight architectures operate on the level of individual whole-brain fMRI volumes (e.g., individual TRs).

2D-DeepLight: A whole-brain fMRI volume is first sliced into a sequence of axial 2D-images (from bottom-to-top). These images are passed to a DL model, consisting of a 2D-convolutional feature extractor as well as an LSTM unit and output layer. First, the 2D-convolutional feature extractor reduces the dimensionality of the axial brain images through a sequence of 2D-convolution layers. The resulting sequence of higher-level slice representations is then fed to a bi-directional LSTM, modeling the spatial dependencies of brain activity within and across brain slices. Lastly, 2D-DeepLight outputs a decoding decision about the cognitive state underlying the fMRI volume, through a softmax output layer with one output unit per cognitive state in the data.

3D-DeepLight: The whole-brain fMRI volume is passed to a 3D-convolutional feature extractor, consisting of a sequence of twelve 3D-convolution layers. The 3D-convolutional feature extractor directly projects the fMRI volume into a higher-level, but lower dimensional, representation of whole-brain activity, without the need of an LSTM. To make a decoding decision, 3D-DeepLight utilizes an output layer that is composed of a 1D- convolution and global average pooling layer as well as a softmax activation function. The 1D-convolution layer maps the higher-level representation of whole-brain activity of the 3D-convolutional feature extractor to one representation for each cognitive state in the data, while the global average pooling layer and softmax function then reduce these to a decoding decision.

To interpret the decoding decisions of the two DeepLight architectures, relating their decoding decisions to the fMRI data, deeplight makes use of the LRP technique. The LRP technique decomposes individual decoding decisions of a DL model into the contributions of the individual input features (here individual voxel activities) to these decisions.

Both deeplight architectures implement basic fit, decode, and interpret methods, next to other functionalities. For details on how to {train, decode, interpret} with deeplight, see scripts/.

For further methdological details regarding the two DeepLight architectures, see the upcoming preprint.

Note that we currently recommend to run any applications of interpret with 2D-DeepLight on CPU instead of GPU, due to its high memory demand (assuming that your available CPU memory is larger than your available GPU memory). This switch can be made by setting the environment variable export CUDA_VISIBLE_DEVICES="". We are currently working on reducing the overall memory demand of interpret with 2D-DeepLight and will push a code update soon.

Modules

modules is a fork of the modules module from interprettensor, which deeplight uses to build the 2D-DeepLight architecture. Note that modules is licensed differently from the other python packages in this repository (see modules/LICENSE).

Basic usage

You can find a set of example python scripts in scripts/, which illustrate how to download and preprocess task-fMRI data from the Human Connectome Project with hcprep and how to {train on, decode, interpret} fMRI data with the two DeepLight architectures of deeplight.

You can run individual scripts in your poetryenvironment with:

cd scripts/
poetry run python <SCRIPT NAME>
Owner
Armin Thomas
Ram and Vijay Shriram Data Science Fellow at Stanford Data Science
Armin Thomas
Meta-Learning Sparse Implicit Neural Representations (NeurIPS 2021)

Meta-SparseINR Official PyTorch implementation of "Meta-learning Sparse Implicit Neural Representations" (NeurIPS 2021) by Jaeho Lee*, Jihoon Tack*, N

Jaeho Lee 41 Nov 10, 2022
Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US simulation

AutomaticUSnavigation Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US

Cesare Magnetti 6 Dec 05, 2022
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
Dynamical movement primitives (DMPs), probabilistic movement primitives (ProMPs), spatially coupled bimanual DMPs.

Movement Primitives Movement primitives are a common group of policy representations in robotics. There are many different types and variations. This

DFKI Robotics Innovation Center 63 Jan 06, 2023
Single-Stage Instance Shadow Detection with Bidirectional Relation Learning (CVPR 2021 Oral)

Single-Stage Instance Shadow Detection with Bidirectional Relation Learning (CVPR 2021 Oral) Tianyu Wang*, Xiaowei Hu*, Chi-Wing Fu, and Pheng-Ann Hen

Steve Wong 51 Oct 20, 2022
Pure python implementation reverse-mode automatic differentiation

MiniGrad A minimal implementation of reverse-mode automatic differentiation (a.k.a. autograd / backpropagation) in pure Python. Inspired by Andrej Kar

Kenny Song 76 Sep 12, 2022
MvtecAD unsupervised Anomaly Detection

MvtecAD unsupervised Anomaly Detection This respository is the unofficial implementations of DFR: Deep Feature Reconstruction for Unsupervised Anomaly

0 Feb 25, 2022
PyTorch IPFS Dataset

PyTorch IPFS Dataset IPFSDataset(Dataset) See the jupyter notepad to see how it works and how it interacts with a standard pytorch DataLoader You need

Jake Kalstad 2 Apr 13, 2022
A Pytorch Implementation of a continuously rate adjustable learned image compression framework.

GainedVAE A Pytorch Implementation of a continuously rate adjustable learned image compression framework, Gained Variational Autoencoder(GainedVAE). N

39 Dec 24, 2022
Easy-to-use library to boost AI inference leveraging state-of-the-art optimization techniques.

NEW RELEASE How Nebullvm Works • Tutorials • Benchmarks • Installation • Get Started • Optimization Examples Discord | Website | LinkedIn | Twitter Ne

Nebuly 1.7k Dec 31, 2022
Image Deblurring using Generative Adversarial Networks

DeblurGAN arXiv Paper Version Pytorch implementation of the paper DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. Our netwo

Orest Kupyn 2.2k Jan 01, 2023
Learning with Subset Stacking

Learning with Subset Stacking (LESS) LESS is a new supervised learning algorithm that is based on training many local estimators on subsets of a given

S. Ilker Birbil 19 Oct 04, 2022
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 360 Dec 10, 2022
Photographic Image Synthesis with Cascaded Refinement Networks - Pytorch Implementation

Photographic Image Synthesis with Cascaded Refinement Networks-Pytorch (https://arxiv.org/abs/1707.09405) This is a Pytorch implementation of cascaded

Soumya Tripathy 63 Mar 27, 2022
License Plate Detection Application

LicensePlate_Project 🚗 🚙 [Project] 2021.02 ~ 2021.09 License Plate Detection Application Overview 1. 데이터 수집 및 라벨링 차량 번호판 이미지를 직접 수집하여 각 이미지에 대해 '번호판

4 Oct 10, 2022
Channel Pruning for Accelerating Very Deep Neural Networks (ICCV'17)

Channel Pruning for Accelerating Very Deep Neural Networks (ICCV'17)

Yihui He 1k Jan 03, 2023
RDA: Robust Domain Adaptation via Fourier Adversarial Attacking

RDA: Robust Domain Adaptation via Fourier Adversarial Attacking Updates 08/2021: check out our domain adaptation for video segmentation paper Domain A

17 Nov 30, 2022
Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression.

Spatio-Temporal Entropy Model A Pytorch Reproduction of Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression. More details can

16 Nov 28, 2022
A Benchmark For Measuring Systematic Generalization of Multi-Hierarchical Reasoning

Orchard Dataset This repository contains the code used for generating the Orchard Dataset, as seen in the Multi-Hierarchical Reasoning in Sequences: S

Bill Pung 1 Jun 05, 2022
Addition of pseudotorsion caclulation eta, theta, eta', and theta' to barnaba package

Addition to Original Barnaba Code: This is modified version of Barnaba package to calculate RNA pseudotorsion angles eta, theta, eta', and theta'. Ple

Mandar Kulkarni 1 Jan 11, 2022