My personal code and solution to the Synacor Challenge from 2012 OSCON.

Overview

Synacor OSCON Challenge Solution (2012)

This repository contains my code and solution to solve the Synacor OSCON 2012 Challenge.

If you are interested in checking out or trying the challenge for yourself, it can be found online still here:

https://challenge.synacor.com/

Notes

Firstly, please understand this is an old challenge. I am not the first to solve it, not even close, and this was solely done because a friend suggested it to me on Discord this past week. I never saw the challenge before and since it involved implementation of a VM, it was something I was interested in checking out since it has been a topic I've been involved in recently.

Next, the challenge is still online and fully functional. Because of that, it is important to note that if you do sign up and decide to try the challenge, the information in this solution will work but the flags (codes) you need will be different. The challenge generates unique flags for each player. (The challenge.bin data file is unique to each player.) If you try to use my flags, you will get an error.

Lastly, I used this challenge as a means to continue with my progress of learning Python. So please excuse the messy code and probably poor / old means of which I did some things. I'm sure there are much better ways to code various things I made, but I am still fairly new to Python.

Repository Information

You can read my full solution here: Full Solution

In order to solve the challenge, the main task you are given is to implement a virtual machine that can emulate the given opcodes found within the challenge arch-spec file. To handle this part of the challenge, and assisting with other parts, I wrote the virtual machine and a disassembler for the binary data file in Python.

Throughout the challenge, once the VM is functional, there are puzzles to be solved. The three puzzles all required their own implementation of code to be solved. Two of the puzzles I was able to solve in Python, however the other was too slow to implement in Python alone. Instead, I opt'd to use C++ for that one instead. (I made a Python implementation using ghetto threading, but it's ugly and slow so not worth including.)

The first puzzle is within the Ruins area of the game. My solver for that can be found here:

The next puzzle, which required the C++ implementation to not be ungodly slow, is for the teleporter item puzzle. That can be found here:

The final puzzle, in the Vault area, can be solved with my solution here:

Other files included in the repo are:

Challenge Information

== Synacor Challenge ==
In this challenge, your job is to use this architecture spec to create a
virtual machine capable of running the included binary.  Along the way,
you will find codes; submit these to the challenge website to track
your progress.  Good luck!


== architecture ==
- three storage regions
  - memory with 15-bit address space storing 16-bit values
  - eight registers
  - an unbounded stack which holds individual 16-bit values
- all numbers are unsigned integers 0..32767 (15-bit)
- all math is modulo 32768; 32758 + 15 => 5

== binary format ==
- each number is stored as a 16-bit little-endian pair (low byte, high byte)
- numbers 0..32767 mean a literal value
- numbers 32768..32775 instead mean registers 0..7
- numbers 32776..65535 are invalid
- programs are loaded into memory starting at address 0
- address 0 is the first 16-bit value, address 1 is the second 16-bit value, etc

== execution ==
- After an operation is executed, the next instruction to read is immediately after the last argument of the current operation.  If a jump was performed, the next operation is instead the exact destination of the jump.
- Encountering a register as an operation argument should be taken as reading from the register or setting into the register as appropriate.

== hints ==
- Start with operations 0, 19, and 21.
- Here's a code for the challenge website: fNCoeXxLEawt
- The program "9,32768,32769,4,19,32768" occupies six memory addresses and should:
  - Store into register 0 the sum of 4 and the value contained in register 1.
  - Output to the terminal the character with the ascii code contained in register 0.

== opcode listing ==
halt: 0
  stop execution and terminate the program
set: 1 a b
  set register <a> to the value of <b>
push: 2 a
  push <a> onto the stack
pop: 3 a
  remove the top element from the stack and write it into <a>; empty stack = error
eq: 4 a b c
  set <a> to 1 if <b> is equal to <c>; set it to 0 otherwise
gt: 5 a b c
  set <a> to 1 if <b> is greater than <c>; set it to 0 otherwise
jmp: 6 a
  jump to <a>
jt: 7 a b
  if <a> is nonzero, jump to <b>
jf: 8 a b
  if <a> is zero, jump to <b>
add: 9 a b c
  assign into <a> the sum of <b> and <c> (modulo 32768)
mult: 10 a b c
  store into <a> the product of <b> and <c> (modulo 32768)
mod: 11 a b c
  store into <a> the remainder of <b> divided by <c>
and: 12 a b c
  stores into <a> the bitwise and of <b> and <c>
or: 13 a b c
  stores into <a> the bitwise or of <b> and <c>
not: 14 a b
  stores 15-bit bitwise inverse of <b> in <a>
rmem: 15 a b
  read memory at address <b> and write it to <a>
wmem: 16 a b
  write the value from <b> into memory at address <a>
call: 17 a
  write the address of the next instruction to the stack and jump to <a>
ret: 18
  remove the top element from the stack and jump to it; empty stack = halt
out: 19 a
  write the character represented by ascii code <a> to the terminal
in: 20 a
  read a character from the terminal and write its ascii code to <a>; it can be assumed that once input starts, it will continue until a newline is encountered; this means that you can safely read whole lines from the keyboard and trust that they will be fully read
noop: 21
  no operation
Owner
:rainbow: Self-taught programmer / reverse engineer. Game hacker / modder. Looking for support for any of my projects? Check my homepage.
[ICLR 2022] DAB-DETR: Dynamic Anchor Boxes are Better Queries for DETR

DAB-DETR This is the official pytorch implementation of our ICLR 2022 paper DAB-DETR. Authors: Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xianbiao Qi

336 Dec 25, 2022
Reimplement of SimSwap training code

SimSwap-train Reimplement of SimSwap training code Instructions 1.Environment Preparation (1)Refer to the README document of SIMSWAP to configure the

seeprettyface.com 111 Dec 31, 2022
PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our paper

Flow Gaussian Mixture Model (FlowGMM) This repository contains a PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our pa

Pavel Izmailov 124 Nov 06, 2022
This repository contains all code and data for the Inside Out Visual Place Recognition task

Inside Out Visual Place Recognition This repository contains code and instructions to reproduce the results for the Inside Out Visual Place Recognitio

15 May 21, 2022
Code of Adverse Weather Image Translation with Asymmetric and Uncertainty aware GAN

Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN (AU-GAN) Official Tensorflow implementation of Adverse Weather Image Trans

Jeong-gi Kwak 36 Dec 26, 2022
HIVE: Evaluating the Human Interpretability of Visual Explanations

HIVE: Evaluating the Human Interpretability of Visual Explanations Project Page | Paper This repo provides the code for HIVE, a human evaluation frame

Princeton Visual AI Lab 16 Dec 13, 2022
Code for our CVPR2021 paper coordinate attention

Coordinate Attention for Efficient Mobile Network Design (preprint) This repository is a PyTorch implementation of our coordinate attention (will appe

Qibin (Andrew) Hou 726 Jan 05, 2023
Pytorch implementation of Hinton's Dynamic Routing Between Capsules

pytorch-capsule A Pytorch implementation of Hinton's "Dynamic Routing Between Capsules". https://arxiv.org/pdf/1710.09829.pdf Thanks to @naturomics fo

Tim Omernick 625 Oct 27, 2022
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023
Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)

Little Ball of Fur is a graph sampling extension library for Python. Please look at the Documentation, relevant Paper, Promo video and External Resour

Benedek Rozemberczki 619 Dec 14, 2022
NP DRAW paper released code

NP-DRAW: A Non-Parametric Structured Latent Variable Model for Image Generation This repo contains the official implementation for the NP-DRAW paper.

ZENG Xiaohui 22 Mar 13, 2022
CoSMA: Convolutional Semi-Regular Mesh Autoencoder. From Paper "Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes"

Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes Implementation of CoSMA: Convolutional Semi-Regular Mesh Autoencoder arXiv p

Fraunhofer SCAI 10 Oct 11, 2022
On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization

On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization This repository contains the evaluation code and alternative pseudo ground truth

Torsten Sattler 36 Dec 22, 2022
TriMap: Large-scale Dimensionality Reduction Using Triplets

TriMap TriMap is a dimensionality reduction method that uses triplet constraints to form a low-dimensional embedding of a set of points. The triplet c

Ehsan Amid 235 Dec 24, 2022
Recovering Brain Structure Network Using Functional Connectivity

Recovering-Brain-Structure-Network-Using-Functional-Connectivity Framework: Papers: This repository provides a PyTorch implementation of the models ad

5 Nov 30, 2022
(Python, R, C/C++) Isolation Forest and variations such as SCiForest and EIF, with some additions (outlier detection + similarity + NA imputation)

IsoTree Fast and multi-threaded implementation of Extended Isolation Forest, Fair-Cut Forest, SCiForest (a.k.a. Split-Criterion iForest), and regular

141 Dec 29, 2022
Rapid experimentation and scaling of deep learning models on molecular and crystal graphs.

LitMatter A template for rapid experimentation and scaling deep learning models on molecular and crystal graphs. How to use Clone this repository and

Nathan Frey 32 Dec 06, 2022
Hough Transform and Hough Line Transform Using OpenCV

Hough transform is a feature extraction method for detecting simple shapes such as circles, lines, etc in an image. Hough Transform and Hough Line Transform is implemented in OpenCV with two methods;

Happy N. Monday 3 Feb 15, 2022
Kaggle Ultrasound Nerve Segmentation competition [Keras]

Ultrasound nerve segmentation using Keras (1.0.7) Kaggle Ultrasound Nerve Segmentation competition [Keras] #Install (Ubuntu {14,16}, GPU) cuDNN requir

179 Dec 28, 2022
Tensorflow AffordanceNet and AffContext implementations

AffordanceNet and AffContext This is tensorflow AffordanceNet and AffContext implementations. Both are implemented and tested with tensorflow 2.3. The

Beatriz Pérez 6 Dec 01, 2022