Official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021.

Overview

Introduction

This repository is the official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021.

Data-free Knowledge Distillation for Object Detection
Akshay Chawla, Hongxu Yin, Pavlo Molchanov and Jose Alvarez
NVIDIA

Abstract: We present DeepInversion for Object Detection (DIODE) to enable data-free knowledge distillation for neural networks trained on the object detection task. From a data-free perspective, DIODE synthesizes images given only an off-the-shelf pre-trained detection network and without any prior domain knowledge, generator network, or pre-computed activations. DIODE relies on two key components—first, an extensive set of differentiable augmentations to improve image fidelity and distillation effectiveness. Second, a novel automated bounding box and category sampling scheme for image synthesis enabling generating a large number of images with a diverse set of spatial and category objects. The resulting images enable data-free knowledge distillation from a teacher to a student detector, initialized from scratch. In an extensive set of experiments, we demonstrate that DIODE’s ability to match the original training distribution consistently enables more effective knowledge distillation than out-of-distribution proxy datasets, which unavoidably occur in a data-free setup given the absence of the original domain knowledge.

[PDF - OpenAccess CVF]

Core idea

LICENSE

Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.

This work is made available under the Nvidia Source Code License (1-Way Commercial). To view a copy of this license, visit https://github.com/NVlabs/DIODE/blob/master/LICENSE

Setup environment

Install conda [link] python package manager then install the lpr environment and other packages as follows:

$ conda env create -f ./docker_environment/lpr_env.yml
$ conda activate lpr
$ conda install -y -c conda-forge opencv
$ conda install -y tqdm
$ git clone https://github.com/NVIDIA/apex
$ cd apex
$ pip install -v --no-cache-dir ./

Note: You may also generate a docker image based on provided Dockerfile docker_environments/Dockerfile.

How to run?

This repository allows for generating location and category conditioned images from an off-the-shelf Yolo-V3 object detection model.

  1. Download the directory DIODE_data from google cloud storage: gcs-link (234 GB)
  2. Copy pre-trained yolo-v3 checkpoint and pickle files as follows:
    $ cp /path/to/DIODE_data/pretrained/names.pkl /pathto/lpr_deep_inversion/models/yolo/
    $ cp /path/to/DIODE_data/pretrained/colors.pkl /pathto/lpr_deep_inversion/models/yolo/
    $ cp /path/to/DIODE_data/pretrained/yolov3-tiny.pt /pathto/lpr_deep_inversion/models/yolo/
    $ cp /path/to/DIODE_data/pretrained/yolov3-spp-ultralytics.pt /pathto/lpr_deep_inversion/models/yolo/
    
  3. Extract the one-box dataset (single object per image) as follows:
    $ cd /path/to/DIODE_data
    $ tar xzf onebox/onebox.tgz -C /tmp
    
  4. Confirm the folder /tmp/onebox containing the onebox dataset is present and has following directories and text file manifest.txt:
    $ cd /tmp/onebox
    $ ls
    images  labels  manifest.txt
    
  5. Generate images from yolo-v3:
    $ cd /path/to/lpr_deep_inversion
    $ chmod +x scripts/runner_yolo_multiscale.sh
    $ scripts/runner_yolo_multiscale.sh
    

Images

Notes:

  1. For ngc, use the provided bash script scripts/diode_ngc_interactivejob.sh to start an interactive ngc job with environment setup, code and data setup.
  2. To generate large dataset use bash script scripts/LINE_looped_runner_yolo.sh.
  3. Check knowledge_distillation subfolder for code for knowledge distillation using generated datasets.

Citation

@inproceedings{chawla2021diode,
	title = {Data-free Knowledge Distillation for Object Detection},
	author = {Chawla, Akshay and Yin, Hongxu and Molchanov, Pavlo and Alvarez, Jose M.},
	booktitle = {The IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
	month = January,
	year = {2021}
}
CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote Sensing Images

CFC-Net This project hosts the official implementation for the paper: CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Dete

ming71 55 Dec 12, 2022
Build Graph Nets in Tensorflow

Graph Nets library Graph Nets is DeepMind's library for building graph networks in Tensorflow and Sonnet. Contact DeepMind 5.2k Jan 05, 2023

Image Segmentation using U-Net, U-Net with skip connections and M-Net architectures

Brain-Image-Segmentation Segmentation of brain tissues in MRI image has a number of applications in diagnosis, surgical planning, and treatment of bra

Angad Bajwa 8 Oct 27, 2022
Supplementary code for SIGGRAPH 2021 paper: Discovering Diverse Athletic Jumping Strategies

SIGGRAPH 2021: Discovering Diverse Athletic Jumping Strategies project page paper demo video Prerequisites Important Notes We suspect there are bugs i

54 Dec 06, 2022
Contrastive Learning for Metagenomic Binning

CLMB A simple framework for CLMB - a novel deep Contrastive Learningfor Metagenomic Binning Created by Pengfei Zhang, senior of Department of Computer

1 Sep 14, 2022
Continuum Learning with GEM: Gradient Episodic Memory

Gradient Episodic Memory for Continual Learning Source code for the paper: @inproceedings{GradientEpisodicMemory, title={Gradient Episodic Memory

Facebook Research 360 Dec 27, 2022
RaceBERT -- A transformer based model to predict race and ethnicty from names

RaceBERT -- A transformer based model to predict race and ethnicty from names Installation pip install racebert Using a virtual environment is highly

Prasanna Parasurama 3 Nov 02, 2022
Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Muhammad Maaz 206 Jan 04, 2023
GLANet - The code for Global and Local Alignment Networks for Unpaired Image-to-Image Translation arxiv

GLANet The code for Global and Local Alignment Networks for Unpaired Image-to-Image Translation arxiv Framework: visualization results: Getting Starte

stanley 29 Dec 14, 2022
Convenient tool for speeding up the intern/officer review process.

icpc-app-screen Convenient tool for speeding up the intern/officer applicant review process. Eliminates the pain from reading application responses of

1 Oct 30, 2021
Pytorch implementation of SELF-ATTENTIVE VAD, ICASSP 2021

SELF-ATTENTIVE VAD: CONTEXT-AWARE DETECTION OF VOICE FROM NOISE (ICASSP 2021) Pytorch implementation of SELF-ATTENTIVE VAD | Paper | Dataset Yong Rae

97 Dec 23, 2022
Tools for the Cleveland State Human Motion and Control Lab

Introduction This is a collection of tools that are helpful for gait analysis. Some are specific to the needs of the Human Motion and Control Lab at C

CSU Human Motion and Control Lab 88 Dec 16, 2022
Existing Literature about Machine Unlearning

Machine Unlearning Papers 2021 Brophy and Lowd. Machine Unlearning for Random Forests. In ICML 2021. Bourtoule et al. Machine Unlearning. In IEEE Symp

Jonathan Brophy 213 Jan 08, 2023
[3DV 2021] A Dataset-Dispersion Perspective on Reconstruction Versus Recognition in Single-View 3D Reconstruction Networks

dispersion-score Official implementation of 3DV 2021 Paper A Dataset-dispersion Perspective on Reconstruction versus Recognition in Single-view 3D Rec

Yefan 7 May 28, 2022
UMT is a unified and flexible framework which can handle different input modality combinations, and output video moment retrieval and/or highlight detection results.

Unified Multi-modal Transformers This repository maintains the official implementation of the paper UMT: Unified Multi-modal Transformers for Joint Vi

Applied Research Center (ARC), Tencent PCG 84 Jan 04, 2023
Research code of ICCV 2021 paper "Mesh Graphormer"

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
[NeurIPS 2021] Introspective Distillation for Robust Question Answering

Introspective Distillation (IntroD) This repository is the Pytorch implementation of our paper "Introspective Distillation for Robust Question Answeri

Yulei Niu 13 Jul 26, 2022
This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees

Mega-NeRF This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees used by the Mega-NeRF-Dynamic viewe

cmusatyalab 260 Dec 28, 2022
An end-to-end machine learning library to directly optimize AUC loss

LibAUC An end-to-end machine learning library for AUC optimization. Why LibAUC? Deep AUC Maximization (DAM) is a paradigm for learning a deep neural n

Andrew 75 Dec 12, 2022
Code for "Single-view robot pose and joint angle estimation via render & compare", CVPR 2021 (Oral).

Single-view robot pose and joint angle estimation via render & compare Yann Labbé, Justin Carpentier, Mathieu Aubry, Josef Sivic CVPR: Conference on C

Yann Labbé 51 Oct 14, 2022