[NeurIPS-2020] Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID.

Related tags

Deep LearningSpCL
Overview

Python >=3.5 PyTorch >=1.0

Self-paced Contrastive Learning (SpCL)

The official repository for Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID, which is accepted by NeurIPS-2020. SpCL achieves state-of-the-art performances on both unsupervised domain adaptation tasks and unsupervised learning tasks for object re-ID, including person re-ID and vehicle re-ID.

framework

Updates

[2020-10-13] All trained models for the camera-ready version have been updated, see Trained Models for details.

[2020-09-25] SpCL has been accepted by NeurIPS on the condition that experiments on DukeMTMC-reID dataset should be removed, since the dataset has been taken down and should no longer be used.

[2020-07-01] We did the code refactoring to support distributed training, stronger performances and more features. Please see OpenUnReID.

Requirements

Installation

git clone https://github.com/yxgeee/SpCL.git
cd SpCL
python setup.py develop

Prepare Datasets

cd examples && mkdir data

Download the person datasets Market-1501, MSMT17, PersonX, and the vehicle datasets VehicleID, VeRi-776, VehicleX. Then unzip them under the directory like

SpCL/examples/data
├── market1501
│   └── Market-1501-v15.09.15
├── msmt17
│   └── MSMT17_V1
├── personx
│   └── PersonX
├── vehicleid
│   └── VehicleID -> VehicleID_V1.0
├── vehiclex
│   └── AIC20_ReID_Simulation -> AIC20_track2/AIC20_ReID_Simulation
└── veri
    └── VeRi -> VeRi_with_plate

Prepare ImageNet Pre-trained Models for IBN-Net

When training with the backbone of IBN-ResNet, you need to download the ImageNet-pretrained model from this link and save it under the path of logs/pretrained/.

mkdir logs && cd logs
mkdir pretrained

The file tree should be

SpCL/logs
└── pretrained
    └── resnet50_ibn_a.pth.tar

ImageNet-pretrained models for ResNet-50 will be automatically downloaded in the python script.

Training

We utilize 4 GTX-1080TI GPUs for training. Note that

  • The training for SpCL is end-to-end, which means that no source-domain pre-training is required.
  • use --iters 400 (default) for Market-1501 and PersonX datasets, and --iters 800 for MSMT17, VeRi-776, VehicleID and VehicleX datasets;
  • use --width 128 --height 256 (default) for person datasets, and --height 224 --width 224 for vehicle datasets;
  • use -a resnet50 (default) for the backbone of ResNet-50, and -a resnet_ibn50a for the backbone of IBN-ResNet.

Unsupervised Domain Adaptation

To train the model(s) in the paper, run this command:

CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_uda.py \
  -ds $SOURCE_DATASET -dt $TARGET_DATASET --logs-dir $PATH_OF_LOGS

Some examples:

### PersonX -> Market-1501 ###
# use all default settings is ok
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_uda.py \
  -ds personx -dt market1501 --logs-dir logs/spcl_uda/personx2market_resnet50

### Market-1501 -> MSMT17 ###
# use all default settings except for iters=800
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_uda.py --iters 800 \
  -ds market1501 -dt msmt17 --logs-dir logs/spcl_uda/market2msmt_resnet50

### VehicleID -> VeRi-776 ###
# use all default settings except for iters=800, height=224 and width=224
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_uda.py --iters 800 --height 224 --width 224 \
  -ds vehicleid -dt veri --logs-dir logs/spcl_uda/vehicleid2veri_resnet50

Unsupervised Learning

To train the model(s) in the paper, run this command:

CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_usl.py \
  -d $DATASET --logs-dir $PATH_OF_LOGS

Some examples:

### Market-1501 ###
# use all default settings is ok
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_usl.py \
  -d market1501 --logs-dir logs/spcl_usl/market_resnet50

### MSMT17 ###
# use all default settings except for iters=800
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_usl.py --iters 800 \
  -d msmt17 --logs-dir logs/spcl_usl/msmt_resnet50

### VeRi-776 ###
# use all default settings except for iters=800, height=224 and width=224
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_usl.py --iters 800 --height 224 --width 224 \
  -d veri --logs-dir logs/spcl_usl/veri_resnet50

Evaluation

We utilize 1 GTX-1080TI GPU for testing. Note that

  • use --width 128 --height 256 (default) for person datasets, and --height 224 --width 224 for vehicle datasets;
  • use --dsbn for domain adaptive models, and add --test-source if you want to test on the source domain;
  • use -a resnet50 (default) for the backbone of ResNet-50, and -a resnet_ibn50a for the backbone of IBN-ResNet.

Unsupervised Domain Adaptation

To evaluate the domain adaptive model on the target-domain dataset, run:

CUDA_VISIBLE_DEVICES=0 \
python examples/test.py --dsbn \
  -d $DATASET --resume $PATH_OF_MODEL

To evaluate the domain adaptive model on the source-domain dataset, run:

CUDA_VISIBLE_DEVICES=0 \
python examples/test.py --dsbn --test-source \
  -d $DATASET --resume $PATH_OF_MODEL

Some examples:

### Market-1501 -> MSMT17 ###
# test on the target domain
CUDA_VISIBLE_DEVICES=0 \
python examples/test.py --dsbn \
  -d msmt17 --resume logs/spcl_uda/market2msmt_resnet50/model_best.pth.tar
# test on the source domain
CUDA_VISIBLE_DEVICES=0 \
python examples/test.py --dsbn --test-source \
  -d market1501 --resume logs/spcl_uda/market2msmt_resnet50/model_best.pth.tar

Unsupervised Learning

To evaluate the model, run:

CUDA_VISIBLE_DEVICES=0 \
python examples/test.py \
  -d $DATASET --resume $PATH

Some examples:

### Market-1501 ###
CUDA_VISIBLE_DEVICES=0 \
python examples/test.py \
  -d market1501 --resume logs/spcl_usl/market_resnet50/model_best.pth.tar

Trained Models

framework

You can download the above models in the paper from [Google Drive] or [Baidu Yun](password: w3l9).

Citation

If you find this code useful for your research, please cite our paper

@inproceedings{ge2020selfpaced,
    title={Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID},
    author={Yixiao Ge and Feng Zhu and Dapeng Chen and Rui Zhao and Hongsheng Li},
    booktitle={Advances in Neural Information Processing Systems},
    year={2020}
}
Owner
Yixiao Ge
Ph.D Candidate @ CUHK-MMLab
Yixiao Ge
A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers.

Dying Light 2 PAKFile Utility A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers. This tool aims to make PAKFile (.pak files) modding a

RHQ Online 12 Aug 26, 2022
Distance Encoding for GNN Design

Distance-encoding for GNN design This repository is the official PyTorch implementation of the DEGNN and DEAGNN framework reported in the paper: Dista

172 Nov 08, 2022
Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

PyTorch code to reproduce LyDROO algorithm [1], which is an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability an

Liang HUANG 87 Dec 28, 2022
A simple python module to generate anchor (aka default/prior) boxes for object detection tasks.

PyBx WIP A simple python module to generate anchor (aka default/prior) boxes for object detection tasks. Calculated anchor boxes are returned as ndarr

thatgeeman 4 Dec 15, 2022
Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

66 Dec 15, 2022
Official implementation for NIPS'17 paper: PredRNN: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal LSTMs.

PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning The predictive learning of spatiotemporal sequences aims to generate future

THUML: Machine Learning Group @ THSS 243 Dec 26, 2022
The Power of Scale for Parameter-Efficient Prompt Tuning

The Power of Scale for Parameter-Efficient Prompt Tuning Implementation of soft embeddings from https://arxiv.org/abs/2104.08691v1 using Pytorch and H

Kip Parker 208 Dec 30, 2022
An ever-growing playground of notebooks showcasing CLIP's impressive zero-shot capabilities.

Playground for CLIP-like models Demo Colab Link GradCAM Visualization Naive Zero-shot Detection Smarter Zero-shot Detection Captcha Solver Changelog 2

Kevin Zakka 101 Dec 30, 2022
Official Pytorch implementation of the paper: "Locally Shifted Attention With Early Global Integration"

Locally-Shifted-Attention-With-Early-Global-Integration Pretrained models You can download all the models from here. Training Imagenet python -m torch

Shelly Sheynin 14 Apr 15, 2022
Tensorflow-seq2seq-tutorials - Dynamic seq2seq in TensorFlow, step by step

seq2seq with TensorFlow Collection of unfinished tutorials. May be good for educational purposes. 1 - simple sequence-to-sequence model with dynamic u

Matvey Ezhov 1k Dec 17, 2022
Official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

Vision Transformer with Progressive Sampling This is the official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

yuexy 123 Jan 01, 2023
PyTorch original implementation of Cross-lingual Language Model Pretraining.

XLM NEW: Added XLM-R model. PyTorch original implementation of Cross-lingual Language Model Pretraining. Includes: Monolingual language model pretrain

Facebook Research 2.7k Dec 27, 2022
A Pythonic library for Nvidia Codec.

A Pythonic library for Nvidia Codec. The project is still in active development; expect breaking changes. Why another Python library for Nvidia Codec?

Zesen Qian 12 Dec 27, 2022
[ECCV2020] Content-Consistent Matching for Domain Adaptive Semantic Segmentation

[ECCV20] Content-Consistent Matching for Domain Adaptive Semantic Segmentation This is a PyTorch implementation of CCM. News: GTA-4K list is available

Guangrui Li 88 Aug 25, 2022
Implementation of "Selection via Proxy: Efficient Data Selection for Deep Learning" from ICLR 2020.

Selection via Proxy: Efficient Data Selection for Deep Learning This repository contains a refactored implementation of "Selection via Proxy: Efficien

Stanford Future Data Systems 70 Nov 16, 2022
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot

GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.

2.3k Jan 09, 2023
Tandem Mass Spectrum Prediction with Graph Transformers

MassFormer This is the original implementation of MassFormer, a graph transformer for small molecule MS/MS prediction. Check out the preprint on arxiv

Röst Lab 13 Oct 27, 2022
This repository is to support contributions for tools for the Project CodeNet dataset hosted in DAX

The goal of Project CodeNet is to provide the AI-for-Code research community with a large scale, diverse, and high quality curated dataset to drive innovation in AI techniques.

International Business Machines 1.2k Jan 04, 2023
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
"Graph Neural Controlled Differential Equations for Traffic Forecasting", AAAI 2022

Graph Neural Controlled Differential Equations for Traffic Forecasting Setup Python environment for STG-NCDE Install python environment $ conda env cr

Jeongwhan Choi 55 Dec 28, 2022