A method for cleaning and classifying text using transformers.

Overview

NLP Translation and Classification

The repository contains a method for classifying and cleaning text using NLP transformers.

Overview

The input data are web-scraped product names gathered from various e-shops. The products are either monitors or printers. Each product in the dataset has a scraped name containing information about the product brand, and product model name, but also unwanted noise - irrelevant information about the item. Additionally, only some records are relevant, meaning that they belong to the correct category: monitor or printer, while other records belong to unwanted categories like accessories or TVs.

The goal of the tasks is to preprocess web-scraped data by removing noisy records and cleaning product names. Preliminary experiments showed that classic machine learning methods like tf-idf vectorization and classification struggled to achieve good results. Instead NLP transformers were employed:

  • First, DistilBERT was utilized for removing irrelevant records. The available data are monitors with annotated labels where the records are classified into three classes: "Monitor", "TV", and "Noise".
  • After, T5 was applied for cleaning product names by translating scraped name into clean name containing only product brand and product model name. For instance, for the given input "monitor led aoc 24g2e 24" ips 1080 ..." the desired output is "aoc | 24g2e". The available data are monitors and printers with annotated targets.

The datasets are split into training, validation and test sets without overlapping records.

The results and details about training and evaluation procedure can be found in the Jupyter Notebooks, see Content section below.

Content

The repository contains Jupyter Notebooks for training and evaluating NNs:

  • 01_data_exploration.ipynb - The notebook contains an exploration of the datasets for sequence classification and translation. It includes visualization of distributions of targets, and overview of available metadata.
  • 02a_classification_fine_tuning.ipynb - The notebook fine-tunes a DistilBERT classifier using training and validation sets, and saves the trained checkpoint.
  • 02b_classification_evaluation.ipynb - The notebook evaluates classification scores on the test set. It includes: a classification report with precision, recall and F1 scores; and a confusion matrix.
  • 03a_translation_fine_tuning.ipynb - The notebook fine-tunes a T5 translation network using training and validation sets, and saves the trained checkpoint.
  • 03b_translation_evaluation.ipynb - The notebook evaluates translation metrics on the test set. The metrics are: Text Accuracy (exact match of target and predicted sequences); Levenshtein Score (normalized reversed Levenshtein Distance where 1 is the best and 0 is the worst); and Jaccard Index.
  • 04_benchmarking.ipynb - The notebook evaluates GPU memory and time needed for running inference on DistilBERT and T5 models using various values of batch size and sequence length.

Getting Started

Package Dependencies

The method were developed using Python=3.7 with transformers=4.8 framework that uses PyTorch=1.9 machine learning framework on a backend. Additionally, the repository requires packages: numpy, pandas, matplotlib and datasets.

To install required packages with PyTorch for CPU run:

pip install -r requirements.txt

For PyTorch with GPU run:

pip install -r requirements_gpu.txt

The requirement files do not contain jupyterlab nor any other IDE. To install jupyterlab run

pip install jupyterlab

Contact

Rail Chamidullin - [email protected] - Github account

Owner
Ray Chamidullin
Ray Chamidullin
Which Apple Keeps Which Doctor Away? Colorful Word Representations with Visual Oracles

Which Apple Keeps Which Doctor Away? Colorful Word Representations with Visual Oracles (TASLP 2022)

Zhuosheng Zhang 3 Apr 14, 2022
Using BERT-based models for toxic span detection

SemEval 2021 Task 5: Toxic Spans Detection: Task: Link to SemEval-2021: Task 5 Toxic Span Detection is https://competitions.codalab.org/competitions/2

Ravika Nagpal 1 Jan 04, 2022
BiNE: Bipartite Network Embedding

BiNE: Bipartite Network Embedding This repository contains the demo code of the paper: BiNE: Bipartite Network Embedding. Ming Gao, Leihui Chen, Xiang

leihuichen 214 Nov 24, 2022
Pattern Matching in Python

Pattern Matching finalmente chega no Python 3.10. E daí? "Pattern matching", ou "correspondência de padrões" como é conhecido no Brasil. Algumas pesso

Fabricio Werneck 6 Feb 16, 2022
Unsupervised intent recognition

INTENT author: steeve LAQUITAINE description: deployment pattern: currently batch only Setup & run git clone https://github.com/slq0/intent.git bash

sl 1 Apr 08, 2022
State of the Art Natural Language Processing

Spark NLP: State of the Art Natural Language Processing Spark NLP is a Natural Language Processing library built on top of Apache Spark ML. It provide

John Snow Labs 3k Jan 05, 2023
Automatic privilege escalation for misconfigured capabilities, sudo and suid binaries

GTFONow Automatic privilege escalation for misconfigured capabilities, sudo and suid binaries. Features Automatically escalate privileges using miscon

101 Jan 03, 2023
Translators - is a library which aims to bring free, multiple, enjoyable translation to individuals and students in Python

Translators - is a library which aims to bring free, multiple, enjoyable translation to individuals and students in Python

UlionTse 907 Dec 27, 2022
Open Source Neural Machine Translation in PyTorch

OpenNMT-py: Open-Source Neural Machine Translation OpenNMT-py is the PyTorch version of the OpenNMT project, an open-source (MIT) neural machine trans

OpenNMT 5.8k Jan 04, 2023
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators

ELECTRA Introduction ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using

Google Research 2.1k Dec 28, 2022
Material for GW4SHM workshop, 16/03/2022.

GW4SHM Workshop Wednesday, 16th March 2022 (13:00 – 15:15 GMT): Presented by: Dr. Rhodri Nelson, Imperial College London Project website: https://www.

Devito Codes 1 Mar 16, 2022
Convolutional 2D Knowledge Graph Embeddings resources

ConvE Convolutional 2D Knowledge Graph Embeddings resources. Paper: Convolutional 2D Knowledge Graph Embeddings Used in the paper, but do not use thes

Tim Dettmers 586 Dec 24, 2022
Random-Word-Generator - Generates meaningful words from dictionary with given no. of letters and words.

Random Word Generator Generates meaningful words from dictionary with given no. of letters and words. This might be useful for generating short links

Mohammed Rabil 1 Jan 01, 2022
This project uses unsupervised machine learning to identify correlations between daily inoculation rates in the USA and twitter sentiment in regards to COVID-19.

Twitter COVID-19 Sentiment Analysis Members: Christopher Bach | Khalid Hamid Fallous | Jay Hirpara | Jing Tang | Graham Thomas | David Wetherhold Pro

4 Oct 15, 2022
Code for the paper TestRank: Bringing Order into Unlabeled Test Instances for Deep Learning Tasks

TestRank in Pytorch Code for the paper TestRank: Bringing Order into Unlabeled Test Instances for Deep Learning Tasks by Yu Li, Min Li, Qiuxia Lai, Ya

3 May 19, 2022
Stuff related to Ben Eater's 8bit breadboard computer

8bit breadboard computer simulator This is an assembler + simulator/emulator of Ben Eater's 8bit breadboard computer. For a version with its RAM upgra

Marijn van Vliet 29 Dec 29, 2022
✔👉A Centralized WebApp to Ensure Road Safety by checking on with the activities of the driver and activating label generator using NLP.

AI-For-Road-Safety Challenge hosted by Omdena Hyderabad Chapter Original Repo Link : https://github.com/OmdenaAI/omdena-india-roadsafety Final Present

Prathima Kadari 7 Nov 29, 2022
Natural Language Processing at EDHEC, 2022

Natural Language Processing Here you will find the teaching materials for the "Natural Language Processing" course at EDHEC Business School, 2022 What

1 Feb 04, 2022
Espial is an engine for automated organization and discovery of personal knowledge

Live Demo (currently not running, on it) Espial is an engine for automated organization and discovery in knowledge bases. It can be adapted to run wit

Uzay-G 159 Dec 30, 2022