Code for "Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance" at NeurIPS 2021

Overview

Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance

Justin Lim, Christina X Ji, Michael Oberst, Saul Blecker, Leora Horwitz, and David Sontag. 2021. Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance. In Thirty-fifth Conference on Neural Information Processing Systems.

Individuals often make different decisions when faced with the same context, due to personal preferences and background. For instance, judges may vary in their leniency towards certain drug-related offenses, and doctors may vary in their preference for how to start treatment for certain types of patients. With these examples in mind, we present an algorithm for identifying types of contexts (e.g., types of cases or patients) with high inter-decision-maker disagreement. We formalize this as a causal inference problem, seeking a region where the assignment of decision-maker has a large causal effect on the decision. We give an iterative algorithm to find a region maximizing this objective and give a generalization bound for its performance. In a semi-synthetic experiment, we show that our algorithm recovers the correct region of disagreement accurately compared to baselines. Finally, we apply our algorithm to real-world healthcare datasets, recovering variation that aligns with existing clinical knowledge.

To run our algorithm, see run_semisynth_exp_recover_beta.ipynb for how to call IterativeRegionEstimator.py. The baselines and our model are also implemented in baselines.py. Helper functions (e.g. for evaluation) are in helpers.py.

Please refer to the following steps to reproduce the experiments and figures in this paper:

  1. To set-up the required packages, run create_env.sh, passing in a conda environment name. Then run source activate with the environment name to enter it.

  2. To run the semi-synthetic experiment,

    1. Download the criminal justice dataset from https://github.com/stanford-policylab/recidivism-predictions
    2. Process the data using data_processing/semisynth_process_data.ipynb.
    3. To run the iterative algorithm and baselines, run python3 run_baselines_on_semisynth.py with the product of the following arguments:
      1. type of model: Iterative, Direct, TarNet, ULearner, CausalForest
      2. number of agents: 2, 5, 10, 20, 40, 87 in our experiments
      3. subset: drug_possession, misdemeanor_under35
    4. Figures 1, 3, and 4 compare metrics for the methods. They can be produced by running plot_semisynth.ipynb.
    5. Figure 2 examines tuning the region size. run_semisynth_exp_recoverbeta.ipynb is a stand-alone notebook for reproducing it.
    6. Figures 5 and 6 examine convergence of the iterative algorithm. They can be produced by running plot_convergence.ipynb.
    7. Figures 7 and 8 examine how robust the iterative algorithm and direct baselines are to violations of the assumption that there are two agent groups. First, run python3 run_robustness_semisynth_experiment.py with the product of the following arguments:
      1. type of model: Iterative, Direct
      2. number of groups: 2, 3, 5, 10
      3. subset: drug_possession, misdemeanor_under35 Note that the number of agents is fixed at 40. The figures can then be produced by running plot_robustness.ipynb.
    8. Note: Helper code that is called to generate semi-synthetic data is located in semisynth_subsets.py, semisynth_dataloader.py, and semisynth_dataloader_robust.py.
  3. The real-world diabetes experiment uses proprietary data extracted using generate_t2dm_cohort.sql and first_line.sql.

    1. Select an outcome model from logistic regressions, decision trees, and random forests based on AUC, calibration, and partial dependence plots. Figure 9 and the statistics in Table 2 that guided our selection of a random forest outcome model are produced in select_outcome_model_for_diabetes_experiment.ipynb.
    2. The experiment is run with python3 run_baseline_models.py diabetes Iterative DecisionTree RandomForest. Figure 10b, the information needed to create Figures 10a, the statistics in Tables 1 and 3, and the fold consistency evaluation will be outputted.
    3. Note: Data loading helper functions, including how data is split, are located in real_data_loader.py. Most of the functions called to generate the output are located in realdata_analysis.py.
  4. The real-world Parkinson's experiment was run using open-access data.

    1. Download the data from https://www.ppmi-info.org/.
    2. Run python3 ppmi_feature_extraction.py passing in the directory containing the downloaded raw data and directory where processed data will be outputted.
    3. Manually process the treatment data to correct for typos in the drug name and treatment date
    4. Run process_parkinsons_data.ipynb to gather the data for the experiment.
    5. The experiment is run with python3 run_baseline_models.py ppmi Iterative DecisionTree. The information for creating Figure 11 and Table 4 are outputted.
Owner
Sontag Lab
Machine learning algorithms and applications to health care.
Sontag Lab
Everything you want about DP-Based Federated Learning, including Papers and Code. (Mechanism: Laplace or Gaussian, Dataset: femnist, shakespeare, mnist, cifar-10 and fashion-mnist. )

Differential Privacy (DP) Based Federated Learning (FL) Everything about DP-based FL you need is here. (所有你需要的DP-based FL的信息都在这里) Code Tip: the code o

wenzhu 83 Dec 24, 2022
Official Pytorch implementation of MixMo framework

MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks Official PyTorch implementation of the MixMo framework | paper | docs Alexandr

79 Nov 07, 2022
Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.

Evidential Deep Learning for Guided Molecular Property Prediction and Discovery Ava Soleimany*, Alexander Amini*, Samuel Goldman*, Daniela Rus, Sangee

Alexander Amini 75 Dec 15, 2022
A light-weight image labelling tool for Python designed for creating segmentation data sets.

An image labelling tool for creating segmentation data sets, for Django and Flask.

117 Nov 21, 2022
An implementation of a sequence to sequence neural network using an encoder-decoder

Keras implementation of a sequence to sequence model for time series prediction using an encoder-decoder architecture. I created this post to share a

Luke Tonin 195 Dec 17, 2022
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.

Deep Image Search - AI-Based Image Search Engine Deep Image Search is an AI-based image search engine that includes deep transfer learning features Ex

139 Jan 01, 2023
An inofficial PyTorch implementation of PREDATOR based on KPConv.

PREDATOR: Registration of 3D Point Clouds with Low Overlap An inofficial PyTorch implementation of PREDATOR based on KPConv. The code has been tested

ZhuLifa 14 Aug 03, 2022
YOLO-v5 기반 단안 카메라의 영상을 활용해 차간 거리를 일정하게 유지하며 주행하는 Adaptive Cruise Control 기능 구현

자율 주행차의 영상 기반 차간거리 유지 개발 Table of Contents 프로젝트 소개 주요 기능 시스템 구조 디렉토리 구조 결과 실행 방법 참조 팀원 프로젝트 소개 YOLO-v5 기반으로 단안 카메라의 영상을 활용해 차간 거리를 일정하게 유지하며 주행하는 Adap

14 Jun 29, 2022
A Python library for Deep Graph Networks

PyDGN Wiki Description This is a Python library to easily experiment with Deep Graph Networks (DGNs). It provides automatic management of data splitti

Federico Errica 194 Dec 22, 2022
Semantic Bottleneck Scene Generation

SB-GAN Semantic Bottleneck Scene Generation Coupling the high-fidelity generation capabilities of label-conditional image synthesis methods with the f

Samaneh Azadi 41 Nov 28, 2022
KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

86 Dec 12, 2022
Faune proche - Retrieval of Faune-France data near a google maps location

faune_proche Récupération des données de Faune-France près d'un lieu google maps

4 Feb 15, 2022
The source code for 'Noisy-Labeled NER with Confidence Estimation' accepted by NAACL 2021

Kun Liu*, Yao Fu*, Chuanqi Tan, Mosha Chen, Ningyu Zhang, Songfang Huang, Sheng Gao. Noisy-Labeled NER with Confidence Estimation. NAACL 2021. [arxiv]

30 Nov 12, 2022
Mouse Brain in the Model Zoo

Deep Neural Mouse Brain Modeling This is the repository for the ongoing deep neural mouse modeling project, an attempt to characterize the representat

Colin Conwell 15 Aug 22, 2022
Node-level Graph Regression with Deep Gaussian Process Models

Node-level Graph Regression with Deep Gaussian Process Models Prerequests our implementation is mainly based on tensorflow 1.x and gpflow 1.x: python

1 Jan 16, 2022
A curated list of awesome deep long-tailed learning resources.

A curated list of awesome deep long-tailed learning resources.

vanint 210 Dec 25, 2022
A tf.keras implementation of Facebook AI's MadGrad optimization algorithm

MADGRAD Optimization Algorithm For Tensorflow This package implements the MadGrad Algorithm proposed in Adaptivity without Compromise: A Momentumized,

20 Aug 18, 2022
NumPy로 구현한 딥러닝 라이브러리입니다. (자동 미분 지원)

Deep Learning Library only using NumPy 본 레포지토리는 NumPy 만으로 구현한 딥러닝 라이브러리입니다. 자동 미분이 구현되어 있습니다. 자동 미분 자동 미분은 미분을 자동으로 계산해주는 기능입니다. 아래 코드는 자동 미분을 활용해 역전파

조준희 17 Aug 16, 2022
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 883 Jan 07, 2023
TSIT: A Simple and Versatile Framework for Image-to-Image Translation

TSIT: A Simple and Versatile Framework for Image-to-Image Translation This repository provides the official PyTorch implementation for the following p

Liming Jiang 255 Nov 23, 2022