Final-project-robokeeper created by GitHub Classroom

Related tags

HardwareRoboKeeper
Overview

RoboKeeper!

Jonny Bosnich, Joshua Cho, Lio Liang, Marco Morales, Cody Nichoson


Robokeeper being a boss height=

Demonstration Videos

Equipment

Hardware:
  • HDT Global Adroit Manipulator Arm
  • Intel RealSense Camera
Software:
  • Robot Operating System (ROS)
  • MoveIt!
  • OpenCV
  • AprilTag

Quickstart Guide

  1. Install ROS Noetic on Ubuntu 20.04
  2. Create catkin workspace
    $ source /opt/ros/noetic/setup.bash
    $ mkdir -p ~/catkin_ws/src
    $ cd ~/catkin_ws/
    $ catkin_make
    
  3. Copy this repository into src folder
    $ cd ~/catkin_ws/src
    $ git clone [email protected]:ME495-EmbeddedSystems/final-project-robokeeper.git
    
  4. Install required packages and build
    $ source devel/setup.bash
    $ rosdep install --from-paths src --ignore-src -r -y
    $ catkin_make
    

Running the package

  1. First, run the main launchfile. To run the program on the real robot, run the command below.

    roslaunch robokeeper robokeeper_go.launch
    
  2. If using a simulation, add the sim:=true argument when running the main launchfile.

    roslaunch robokeeper robokeeper_go.launch sim:=true
    
  3. The robot now has to pick up the paddle and this is done with two services. First, call above_paddle.

    rosservice call /above_paddle
    
  4. Next, call the 'retrieve_paddle` service.

    rosservice call /retrieve_paddle
    
  5. Call the reset service to move the robot in front of the goal.

    rosservice call /reset
    
  6. Call start_keeping to enable the goal keeping component of the project.

    rosservice call /start_keeping
    
  7. When finished, call the 'stop_keeping' service.

    rosservice call /stop_keeping 
    

Launchfiles

robokeeper_go.launch

This is the main launchfile used to operate robokeeper. It starts by launching robokeeper_moveit.launch which loads the necessary urdf file and hardware configuration, as well as the main MoveIt! executable. It then launches intel_cam.launch which starts the Intel Realsense camera. It also starts a transforms node which handles the calculation of transformation between various frames within the world. Finally, the launchfile starts a motion_control node that publishes appropriate joint state messages to actuate the arm.

robokeeper_moveit.launch

This launchfile loads robot description for the Adroit 6-dof manipulator arm, as well as its hardware and controller configuration from the hdt_6dof_a24_pincer_description package. It also includes move_group.launch from the hdt_6dof_a24_pincer_moveit package, which starts the move group that MoveIt! uses to plan the motion of the arm.

intel_cam.launch

This launchfile starts the Intel Realsense camera by launching rs_camera.launch from the realsense2_camera package. It then launches AprilTag_detection.launch for AprilTag integration.

AprilTag_detection.launch

This launchfile loads parameters necessary for integrating AprilTag detection, which is crucial for detecting the position of the robot relative to the camera. It starts apriltag_ros_continuous_node from the apriltag_ros package.

Nodes

perception

The perception node is responsible for handling the data collected from the Intel RealSense camera utilized to identify and locate the objects that our robot is tasked with blocking. It contains a CV bridge to enable OpenCV integration with ROS, subscribes to the RealSense's camera data, and ultimately publishes 3-dimensional coordinate data of the centroid of the object of interest (a red ball for our purposes).

In order to identify the ball, video frames are iteratively thresholded for a range of HSV values that closely match those of our ball. Once the area of interest is located, a contour is created around its edges and the centroid of the contour located. This centroid can then be treated as the location of the ball in the camera frame and published appropriately.

transforms

Knowing where the ball is relative to the camera is great, but it doesn't help the robot locate the ball. In order to accomplish this, transformations between the camera frame and the robot frame are necessary. This node subscribes to both the ball coordinates from the perception node and AprilTag detections, and publishes the transformed ball coordinates in the robot frame.

In order to complete the relationship between the two frames, an AprilTag with a known transformation between itself and the baselink of the robot (positioned on the floor next to the robot) was used. Using the RealSense, the transformation between the camera frame and the AprilTag can then also be determined. Using these three frames and their relationships, the transformation between coordinates in the camera frame and coordinates in the robot frame can finally be determined.

motion_control

This node provides the core functionality of the robokeeper. Primarily, it subscribes to the topic containing the ball coordinates in the robot frame and contains a number of services utilized to interact with its environment in several ways.

The main service used is /start_keeping. As the name suggests, this service allows the robot to begin interpreting the ball coordinates and attempting to intersect it at the goal line. Appropriate joint trajectory commands are sent to the robot through a mix of MoveIt! and direct joint publishing (depending on the service called) in order to accomplish the task. This node also keeps track of goals scored by determining if the ball has entered the net.

Services

  1. The reset service moves the Adroit arm directly in front of its base and the goal.

    rosservice call /reset
    
  2. The keep service moves the robotic arm to a pose that is only dependent on a y-value. An example of the service being called follows.

    rosservice call /keep "pos: 0.0"
    
  3. above_paddle is a service that moves the arm directly above the paddle holster to get in a position for consistent retrieval.

    rosservice call /above_paddle
    
  4. To retrieve the paddle, the retrieve_paddle can be called. It moves the arm to a postion where it can grip the paddle, it then closes the gripper, and finally moves to the same position as above_paddle.

    rosservice call /retrieve_paddle
    
  5. The start_keeping service enables the robot to block the red ball from entering the goal.

    rosservice call /start_keeping
    
  6. To stop the robot from moving and tracking the ball, call the stop_keeping service.

    rosservice call /stop_keeping 
    

Additional Notes

There are some features within this code that were partially developed, but not completed due to time contraints. Because of this, you may notice certain things in the source code that are not mentioned here.

An example of this is the scoreboard feature. The original plan was to include both a goal counter and block counter when playing with the robot and display these stats to the user in order to create a game. The goal counter was successfully created, but we didn't have time to complete the black counter. The goal counter is located within the 'motion_control' node and the infrastructure for displaying the actual scoreboard using the 'tkinter' library is located in a node called 'scorekeeper'.

Owner
Cody Nichoson
Cody Nichoson
Run this code to blink your ThinkPad LED with a hidden mysterious Morse code! ;)

TMorse Run this code to blink your ThinkPad LED with a hidden mysterious Morse code! ;) Compatible with python3.9+. No third-party library is required

Mahyar 2 Jul 11, 2022
🐱🖨Cat printer is a portable thermal printer sold on AliExpress for around $20.

Cat printer is a portable thermal printer sold on AliExpress for around $20. This repository contains Python code for talking to the cat printer over

671 Jan 05, 2023
An open source two key macro-pad modeled to look like a cartoony melting popsicle

macropopsicle An open source two key macro-pad modeled to look like a cartoony melting popsicle. Build instructions Parts List -1x Top case half (3D p

17 Aug 18, 2022
EuroPi: A reprogrammable Eurorack project based on the Raspberry Pi Pico

EuroPi The EuroPi is a fully user reprogrammable module based on the Raspberry Pi Pico, which allows users to process inputs and controls to produce o

Allen Synthesis 218 Jan 01, 2023
Ansible tools for operating and managing fleets of Blinksticks in harmony using the Blinkstick Python library.

Ansible tools for operating and managing fleets of Blinksticks in harmony using the Blinkstick Python library.

Greg Robinson 3 Aug 10, 2022
Yet another automation project because a smart light is more than just on or off.

Automate home Yet another home automation project because a smart light is more than just on or off. Overview When talking about home automation there

Maja Massarini 62 Oct 10, 2022
A dashboard for Raspberry Pi to display environmental weather data, rain radar, weather forecast, etc. written in Python

Weather Clock for Raspberry PI This project is a dashboard for Raspberry Pi to display environmental weather data, rain radar, weather forecast, etc.

Markus Geiger 1 May 01, 2022
A IC scan test interface for Arduino

ICSCAN_ARDUINO Prerequisites Python 3.6 or higher arduino uno or nano what is this It is a bitstream tranceiver to test IC chip It sends bitstream to

Nifty Chips Laboratory 0 Sep 15, 2022
A python file which I wrote to allow the Dorna Robots API to draw an Image on a 3D plane

Dorna-Robotics-Internship Code In the directory "Code" is a python file which I wrote to allow the Dorna Robots API to draw an Image on a 3D plane. I

Stephen Otto 2 Dec 06, 2021
Provide Unifi device info via api to Home Assistant that will give ap sensors

Unifi AP Device info Provide Unifi device info via api to Home Assistant that will give ap sensors

12 Jan 07, 2023
A simple Picobot project implemented in Python

Python-Picobot A simple Picobot project implemented in Python About Explanation This is my first programming project. Picobot use rules.txt file which

Shayan Shiravani 0 Apr 03, 2022
Nordpool_diff custom integration for Home Assistant

nordpool_diff custom integration for Home Assistant Requires https://github.com/custom-components/nordpool Applies non-causal FIR differentiator1 to N

Joonas Pulakka 45 Dec 23, 2022
CPU benchmark by calculating Pi, powered by Python3

cpu-benchmark Info: CPU benchmark by calculating Pi, powered by Python 3. Algorithm The program calculates pi with an accuracy of 10,000 decimal place

Alex Dedyura 20 Jan 03, 2023
Isaac Gym Environments for Legged Robots

Isaac Gym Environments for Legged Robots This repository provides the environment used to train ANYmal (and other robots) to walk on rough terrain usi

Robotic Systems Lab - Legged Robotics at ETH Zürich 372 Jan 08, 2023
Testing out some (stolen) DMA code for RP2040 Micropython

RP2040_micropython_dma testing out some (stolen) DMA code for RP2040 Micropython. Heavy inspiration and some code from https://iosoft.blog/2021/10/26/

2 Dec 29, 2022
Switch predictor for Home Assistant with AppDeamon

Home Assistant AppDeamon - Event predictor WORK IN PROGRESS - CURRENTLY NOT COMPLETE AND NOT WORK This is an idea under development (when I have free

37 Dec 17, 2022
Micropython automatic watering

micropython-automatic-watering micropython automatic watering his code was developed to be used with nodemcu esp8266, but can be modified to work with

1 Nov 24, 2021
Implemented robot inverse kinematics.

robot_inverse_kinematics Project setup # put the package in the workspace $ cd ~/catkin_ws/ $ catkin_make $ source devel/setup.bash Description In thi

Jianming Han 2 Dec 08, 2022
Skykettle ha - Redmond SkyKettle integration for Home Assistant

Redmond SkyKettle integration for Home Assistant This integration allows to cont

Alexey 'Cluster' Avdyukhin 48 Jan 06, 2023
Robo Arm :: Rigging is a rigging addon for Blender that helps animating industrial robotic arms.

Robo Arm :: Rigging Robo Arm :: Rigging is a rigging addon for Blender that helps animating industrial robotic arms. It construct serial links(a kind

2 Nov 18, 2021