Contextual Attention Network: Transformer Meets U-Net

Overview

Contextual Attention Network: Transformer Meets U-Net

Contexual attention network for medical image segmentation with state of the art results on skin lesion segmentation, multiple myeloma cell segmentation. This method incorpotrates the transformer module into a U-Net structure so as to concomitantly capture long-range dependency along with resplendent local informations. If this code helps with your research please consider citing the following paper:

R. Azad, Moein Heidari, Yuli Wu and Dorit Merhof , "Contextual Attention Network: Transformer Meets U-Net", download link.

@article{reza2022contextual,
  title={Contextual Attention Network: Transformer Meets U-Net},
  author={Reza, Azad and Moein, Heidari and Yuli, Wu and Dorit, Merhof},
  journal={arXiv preprint arXiv:2203.01932},
  year={2022}
}

Please consider starring us, if you found it useful. Thanks

Updates

This code has been implemented in python language using Pytorch library and tested in ubuntu OS, though should be compatible with related environment. following Environement and Library needed to run the code:

  • Python 3
  • Pytorch

Run Demo

For training deep model and evaluating on each data set follow the bellow steps:
1- Download the ISIC 2018 train dataset from this link and extract both training dataset and ground truth folders inside the dataset_isic18.
2- Run Prepare_ISIC2018.py for data preperation and dividing data to train,validation and test sets.
3- Run train_skin.py for training the model using trainng and validation sets. The model will be train for 100 epochs and it will save the best weights for the valiation set.
4- For performance calculation and producing segmentation result, run evaluate_skin.py. It will represent performance measures and will saves related results in results folder.

Notice: For training and evaluating on ISIC 2017 and ph2 follow the bellow steps :

ISIC 2017- Download the ISIC 2017 train dataset from this link and extract both training dataset and ground truth folders inside the dataset_isic18\7.
then Run Prepare_ISIC2017.py for data preperation and dividing data to train,validation and test sets.
ph2- Download the ph2 dataset from this link and extract it then Run Prepare_ph2.py for data preperation and dividing data to train,validation and test sets.
Follow step 3 and 4 for model traing and performance estimation. For ph2 dataset you need to first train the model with ISIC 2017 data set and then fine-tune the trained model using ph2 dataset.

Quick Overview

Diagram of the proposed method

Perceptual visualization of the proposed Contextual Attention module.

Diagram of the proposed method

Results

For evaluating the performance of the proposed method, Two challenging task in medical image segmentaion has been considered. In bellow, results of the proposed approach illustrated.

Task 1: SKin Lesion Segmentation

Performance Comparision on SKin Lesion Segmentation

In order to compare the proposed method with state of the art appraoches on SKin Lesion Segmentation, we considered Drive dataset.

Methods (On ISIC 2017) Dice-Score Sensivity Specificaty Accuracy
Ronneberger and et. all U-net 0.8159 0.8172 0.9680 0.9164
Oktay et. all Attention U-net 0.8082 0.7998 0.9776 0.9145
Lei et. all DAGAN 0.8425 0.8363 0.9716 0.9304
Chen et. all TransU-net 0.8123 0.8263 0.9577 0.9207
Asadi et. all MCGU-Net 0.8927 0.8502 0.9855 0.9570
Valanarasu et. all MedT 0.8037 0.8064 0.9546 0.9090
Wu et. all FAT-Net 0.8500 0.8392 0.9725 0.9326
Azad et. all Proposed TMUnet 0.9164 0.9128 0.9789 0.9660

For more results on ISIC 2018 and PH2 dataset, please refer to the paper

SKin Lesion Segmentation segmentation result on test data

SKin Lesion Segmentation  result (a) Input images. (b) Ground truth. (c) U-net. (d) Gated Axial-Attention. (e) Proposed method without a contextual attention module and (f) Proposed method.

Multiple Myeloma Cell Segmentation

Performance Evalution on the Multiple Myeloma Cell Segmentation task

Methods mIOU
Frequency recalibration U-Net 0.9392
XLAB Insights 0.9360
DSC-IITISM 0.9356
Multi-scale attention deeplabv3+ 0.9065
U-Net 0.7665
Baseline 0.9172
Proposed 0.9395

Multiple Myeloma Cell Segmentation results

Multiple Myeloma Cell Segmentation result

Model weights

You can download the learned weights for each dataset in the following table.

Dataset Learned weights
ISIC 2018 TMUnet
ISIC 2017 TMUnet
Ph2 TMUnet

Query

All implementations are done by Reza Azad and Moein Heidari. For any query please contact us for more information.

rezazad68@gmail.com
moeinheidari7829@gmail.com
Owner
Reza Azad
Deep Learning and Computer Vision Researcher
Reza Azad
Official PyTorch implementation of "Evolving Search Space for Neural Architecture Search"

Evolving Search Space for Neural Architecture Search Usage Install all required dependencies in requirements.txt and replace all ..path/..to in the co

Yuanzheng Ci 10 Oct 24, 2022
Minimal diffusion models - Minimal code and simple experiments to play with Denoising Diffusion Probabilistic Models (DDPMs)

Minimal code and simple experiments to play with Denoising Diffusion Probabilist

Rithesh Kumar 16 Oct 06, 2022
SmartSim Infrastructure Library.

Home Install Documentation Slack Invite Cray Labs SmartSim SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and Ten

Cray Labs 139 Jan 01, 2023
PyTorch-Geometric Implementation of MarkovGNN: Graph Neural Networks on Markov Diffusion

MarkovGNN This is the official PyTorch-Geometric implementation of MarkovGNN paper under the title "MarkovGNN: Graph Neural Networks on Markov Diffusi

HipGraph: High-Performance Graph Analytics and Learning 6 Sep 23, 2022
RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving

RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving (AAAI2021). RTS3D is efficiency and accuracy s

71 Nov 29, 2022
Code for the paper "Adversarial Generator-Encoder Networks"

This repository contains code for the paper "Adversarial Generator-Encoder Networks" (AAAI'18) by Dmitry Ulyanov, Andrea Vedaldi, Victor Lempitsky. Pr

Dmitry Ulyanov 279 Jun 26, 2022
A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning

Officile code repository for "A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning"

Mathieu Godbout 1 Nov 19, 2021
Cleaned up code for DSTC 10: SIMMC 2.0 track: subtask 2: multimodal coreference resolution

UNITER-Based Situated Coreference Resolution with Rich Multimodal Input: arXiv MMCoref_cleaned Code for the MMCoref task of the SIMMC 2.0 dataset. Pre

Yichen (William) Huang 2 Dec 05, 2022
A testcase generation tool for Persistent Memory Programs.

PMFuzz PMFuzz is a testcase generation tool to generate high-value tests cases for PM testing tools (XFDetector, PMDebugger, PMTest and Pmemcheck) If

Systems Research at ShiftLab 14 Jul 24, 2022
StackNet is a computational, scalable and analytical Meta modelling framework

StackNet This repository contains StackNet Meta modelling methodology (and software) which is part of my work as a PhD Student in the computer science

Marios Michailidis 1.3k Dec 15, 2022
A library for optimization on Riemannian manifolds

TensorFlow RiemOpt A library for manifold-constrained optimization in TensorFlow. Installation To install the latest development version from GitHub:

Oleg Smirnov 83 Dec 27, 2022
Code for paper ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.

Who Left the Dogs Out? Evaluation and demo code for our ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization

Benjamin Biggs 29 Dec 28, 2022
Example for AUAV 2022 with obstacle avoidance.

AUAV 2022 Sample This is a sample PX4 based quadrotor path planning framework based on Ubuntu 20.04 and ROS noetic for the IEEE Autonomous UAS 2022 co

James Goppert 11 Sep 16, 2022
tensorflow code for inverse face rendering

InverseFaceRender This is tensorflow code for our project: Learning Inverse Rendering of Faces from Real-world Videos. (https://arxiv.org/abs/2003.120

Yuda Qiu 18 Nov 16, 2022
RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation (CIKM'17)

RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation This is the implementation of RATE: Overcoming Noise and Spar

Yu Zhang 5 Feb 10, 2022
An implementation of MobileFormer

MobileFormer An implementation of MobileFormer proposed by Yinpeng Chen, Xiyang Dai et al. Including [1] Mobile-Former proposed in:

slwang9353 62 Dec 28, 2022
A clean implementation based on AlphaZero for any game in any framework + tutorial + Othello/Gobang/TicTacToe/Connect4 and more

Alpha Zero General (any game, any framework!) A simplified, highly flexible, commented and (hopefully) easy to understand implementation of self-play

Surag Nair 3.1k Jan 05, 2023
A PyTorch Implementation of ViT (Vision Transformer)

ViT - Vision Transformer This is an implementation of ViT - Vision Transformer by Google Research Team through the paper "An Image is Worth 16x16 Word

Quan Nguyen 7 May 11, 2022
A set of Deep Reinforcement Learning Agents implemented in Tensorflow.

Deep Reinforcement Learning Agents This repository contains a collection of reinforcement learning algorithms written in Tensorflow. The ipython noteb

Arthur Juliani 2.2k Jan 01, 2023
Rotation-Only Bundle Adjustment

ROBA: Rotation-Only Bundle Adjustment Paper, Video, Poster, Presentation, Supplementary Material In this repository, we provide the implementation of

Seong 51 Nov 29, 2022