A library for optimization on Riemannian manifolds

Overview

TensorFlow RiemOpt

PyPI arXiv Build Status Coverage Status Code style: black License

A library for manifold-constrained optimization in TensorFlow.

Installation

To install the latest development version from GitHub:

pip install git+https://github.com/master/tensorflow-riemopt.git

To install a package from PyPI:

pip install tensorflow-riemopt

Features

The core package implements concepts in differential geometry, such as manifolds and Riemannian metrics with associated exponential and logarithmic maps, geodesics, retractions, and transports. For manifolds, where closed-form expressions are not available, the library provides numerical approximations.

import tensorflow_riemopt as riemopt

S = riemopt.manifolds.Sphere()

x = S.projx(tf.constant([0.1, -0.1, 0.1]))
u = S.proju(x, tf.constant([1., 1., 1.]))
v = S.proju(x, tf.constant([-0.7, -1.4, 1.4]))

y = S.exp(x, v)

u_ = S.transp(x, y, u)
v_ = S.transp(x, y, v)

Manifolds

  • manifolds.Cholesky - manifold of lower triangular matrices with positive diagonal elements
  • manifolds.Euclidian - unconstrained manifold with the Euclidean metric
  • manifolds.Grassmannian - manifold of p-dimensional linear subspaces of the n-dimensional space
  • manifolds.Hyperboloid - manifold of n-dimensional hyperbolic space embedded in the n+1-dimensional Minkowski space
  • manifolds.Poincare - the Poincaré ball model of the hyperbolic space
  • manifolds.Product - Cartesian product of manifolds
  • manifolds.SPDAffineInvariant - manifold of symmetric positive definite (SPD) matrices endowed with the affine-invariant metric
  • manifolds.SPDLogCholesky - SPD manifold with the Log-Cholesky metric
  • manifolds.SPDLogEuclidean - SPD manifold with the Log-Euclidean metric
  • manifolds.SpecialOrthogonal - manifold of rotation matrices
  • manifolds.Sphere - manifold of unit-normalized points
  • manifolds.StiefelEuclidean - manifold of orthonormal p-frames in the n-dimensional space endowed with the Euclidean metric
  • manifolds.StiefelCanonical - Stiefel manifold with the canonical metric
  • manifolds.StiefelCayley - Stiefel manifold the retraction map via an iterative Cayley transform

Optimizers

Constrained optimization algorithms work as drop-in replacements for Keras optimizers for sparse and dense updates in both Eager and Graph modes.

  • optimizers.RiemannianSGD - Riemannian Gradient Descent
  • optimizers.RiemannianAdam - Riemannian Adam and AMSGrad
  • optimizers.ConstrainedRMSProp - Constrained RMSProp

Layers

  • layers.ManifoldEmbedding - constrained keras.layers.Embedding layer

Examples

  • SPDNet - Huang, Zhiwu, and Luc Van Gool. "A Riemannian network for SPD matrix learning." Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. AAAI Press, 2017.
  • LieNet - Huang, Zhiwu, et al. "Deep learning on Lie groups for skeleton-based action recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
  • GrNet - Huang, Zhiwu, Jiqing Wu, and Luc Van Gool. "Building Deep Networks on Grassmann Manifolds." AAAI. AAAI Press, 2018.
  • Hyperbolic Neural Network - Ganea, Octavian, Gary Bécigneul, and Thomas Hofmann. "Hyperbolic neural networks." Advances in neural information processing systems. 2018.
  • Poincaré GloVe - Tifrea, Alexandru, Gary Becigneul, and Octavian-Eugen Ganea. "Poincaré Glove: Hyperbolic Word Embeddings." International Conference on Learning Representations. 2018.

References

If you find TensorFlow RiemOpt useful in your research, please cite:

@misc{smirnov2021tensorflow,
      title={TensorFlow RiemOpt: a library for optimization on Riemannian manifolds},
      author={Oleg Smirnov},
      year={2021},
      eprint={2105.13921},
      archivePrefix={arXiv},
      primaryClass={cs.MS}
}

Acknowledgment

TensorFlow RiemOpt was inspired by many similar projects:

  • Manopt, a matlab toolbox for optimization on manifolds
  • Pymanopt, a Python toolbox for optimization on manifolds
  • Geoopt: Riemannian Optimization in PyTorch
  • Geomstats, an open-source Python package for computations and statistics on nonlinear manifolds

License

The code is MIT-licensed.

You might also like...
Distributed Asynchronous Hyperparameter Optimization better than HyperOpt.
Distributed Asynchronous Hyperparameter Optimization better than HyperOpt.

UltraOpt : Distributed Asynchronous Hyperparameter Optimization better than HyperOpt. UltraOpt is a simple and efficient library to minimize expensive

Official code for paper "Optimization for Oriented Object Detection via Representation Invariance Loss".

Optimization for Oriented Object Detection via Representation Invariance Loss By Qi Ming, Zhiqiang Zhou, Lingjuan Miao, Xue Yang, and Yunpeng Dong. Th

Keras + Hyperopt: A very simple wrapper for convenient hyperparameter optimization

This project is now archived. It's been fun working on it, but it's time for me to move on. Thank you for all the support and feedback over the last c

Bayesian optimization in PyTorch

BoTorch is a library for Bayesian Optimization built on PyTorch. BoTorch is currently in beta and under active development! Why BoTorch ? BoTorch Prov

optimization routines for hyperparameter tuning
optimization routines for hyperparameter tuning

Optunity is a library containing various optimizers for hyperparameter tuning. Hyperparameter tuning is a recurrent problem in many machine learning t

Distributed Asynchronous Hyperparameter Optimization in Python

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

Hyper-parameter optimization for sklearn

hyperopt-sklearn Hyperopt-sklearn is Hyperopt-based model selection among machine learning algorithms in scikit-learn. See how to use hyperopt-sklearn

A Python implementation of global optimization with gaussian processes.
A Python implementation of global optimization with gaussian processes.

Bayesian Optimization Pure Python implementation of bayesian global optimization with gaussian processes. PyPI (pip): $ pip install bayesian-optimizat

Safe Bayesian Optimization
Safe Bayesian Optimization

SafeOpt - Safe Bayesian Optimization This code implements an adapted version of the safe, Bayesian optimization algorithm, SafeOpt [1], [2]. It also p

Comments
  • Projection on SPDs is not projecting onto SPDs

    Projection on SPDs is not projecting onto SPDs

    Hi, nice to see another package doing optimizationon manifolds! I have not yet had the time to check this versus what pymanopt is doing (I think they use tensor flow as a backend, too?) But I just noticed that

    https://github.com/master/tensorflow-manopt/blob/93402f6770d5b3c45f232340fddfa92a7126f19a/tensorflow_manopt/manifolds/symmetric_positive.py#L37-L41

    This might be wrong. For SPDs, the characteristic property is, that all eigenvalues are positive, so this projection is not projection onto the manifold (of SPDs) but onto the set of positive semidefinite matrices. There is no projection onto the SPDs since that set is open in the set of (symmetric) matrices.

    opened by kellertuer 2
  • GrNet produces NaN entries in input tensor

    GrNet produces NaN entries in input tensor

    Hi! First of all, really appreciate you guys taking the time to build a much required riemmannian geometry based package in tensorflow. It is proving to be quite useful for me. However, I recently ran the [GrNet code] (https://github.com/master/tensorflow-riemopt/tree/master/examples/grnet) with the AFEW dataset(the default dataset used in the code) on my machine and it seems at some point the input tensors get filled with NaN values. I tried tinkering with the learning rate and a few other usual things that could determine the cause of such NaN value in a dl model but it seems to be of no use. Any idea as to why this might be the case- is the code still been checked for bugs or am I missing something? Thanks in advance!

    opened by SouvikBan 2
Releases(v0.1.1)
Owner
Oleg Smirnov
Oleg Smirnov
NeuTex: Neural Texture Mapping for Volumetric Neural Rendering

NeuTex: Neural Texture Mapping for Volumetric Neural Rendering Paper: https://arxiv.org/abs/2103.00762 Running Run on the provided DTU scene cd run ba

Fanbo Xiang 67 Dec 28, 2022
Source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree.

self-driving-car In this repository I will share the source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree. Hope this might

Andrea Palazzi 2.4k Dec 29, 2022
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

18 Jun 28, 2022
Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper

Continual Learning With Filter Atom Swapping Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper If find t

11 Aug 29, 2022
Expert Finding in Legal Community Question Answering

Expert Finding in Legal Community Question Answering Arian Askari, Suzan Verberne, and Gabriella Pasi. Expert Finding in Legal Community Question Answ

Arian Askari 3 Oct 31, 2022
Improved Fitness Optimization Landscapes for Sequence Design

ReLSO Improved Fitness Optimization Landscapes for Sequence Design Description Citation How to run Training models Original data source Description In

Krishnaswamy Lab 44 Dec 20, 2022
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

The source code is temporariy removed, as we are solving potential copyright and license issues with GRANSO (http://www.timmitchell.com/software/GRANS

SUN Group @ UMN 28 Aug 03, 2022
iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis

iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis Andreas Bl

CompVis Heidelberg 36 Dec 25, 2022
A keras implementation of ENet (abandoned for the foreseeable future)

ENet-keras This is an implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, ported from ENet-training (lua-t

Pavlos 115 Nov 23, 2021
Weakly Supervised Scene Text Detection using Deep Reinforcement Learning

Weakly Supervised Scene Text Detection using Deep Reinforcement Learning This repository contains the setup for all experiments performed in our Paper

Emanuel Metzenthin 3 Dec 16, 2022
Optimising chemical reactions using machine learning

Summit Summit is a set of tools for optimising chemical processes. We’ve started by targeting reactions. What is Summit? Currently, reaction optimisat

Sustainable Reaction Engineering Group 75 Dec 14, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

MoCoPnet: Exploring Local Motion and Contrast Priors for Infrared Small Target Super-Resolution Pytorch implementation of local motion and contrast pr

Xinyi Ying 28 Dec 15, 2022
Realtime Face Anti Spoofing with Face Detector based on Deep Learning using Tensorflow/Keras and OpenCV

Realtime Face Anti-Spoofing Detection 🤖 Realtime Face Anti Spoofing Detection with Face Detector to detect real and fake faces Please star this repo

Prem Kumar 86 Aug 03, 2022
Differentiable Wavetable Synthesis

Differentiable Wavetable Synthesis

4 Feb 11, 2022
[ICCV' 21] "Unsupervised Point Cloud Pre-training via Occlusion Completion"

OcCo: Unsupervised Point Cloud Pre-training via Occlusion Completion This repository is the official implementation of paper: "Unsupervised Point Clou

Hanchen 204 Dec 24, 2022
Face Alignment using python

Face Alignment Face Alignment using python Input Image Aligned Face Aligned Face Aligned Face Input Image Aligned Face Input Image Aligned Face Instal

Sajjad Aemmi 28 Nov 23, 2022
3ds-Ghidra-Scripts - Ghidra scripts to help with 3ds reverse engineering

3ds Ghidra Scripts These are ghidra scripts to help with 3ds reverse engineering

Zak 7 May 23, 2022
Library to enable Bayesian active learning in your research or labeling work.

Bayesian Active Learning (BaaL) BaaL is an active learning library developed at ElementAI. This repository contains techniques and reusable components

ElementAI 687 Dec 25, 2022