Deep Learning to Create StepMania SM FIles

Overview

StepCOVNet

header_example

Codacy Badge

Running Audio to SM File Generator

Currently only produces .txt files. Use SMDataTools to convert .txt to .sm

python stepmania_note_generator.py -i --input <string> -o --output <string> --model <string> -v --verbose <int>
  • -i --input input directory path to audio files
  • -o --output output directory path to .txt files
  • -m --model input directory path to StepCOVNet model````
  • OPTIONAL: -v --verbose 1 shows full verbose, 0 shows no verbose; default is 0

Creating Training Dataset

Link to training data: https://drive.google.com/open?id=1eCRYSf2qnbsSOzC-KmxPWcSbMzi1fLHi

To create a training dataset, you need to parse the .sm files and convert sound files into .wav files:

  • SMDataTools should be used to parse the .sm files into .txt files.
  • wav_converter.py can be used to convert the audio files into .wav files. The default sample rate is 16000hz.

Once the parsed .txt files and .wav files are generated, place the .wav files into separate directories and run training_data_collection.py.

python training_data_collection.py -w --wav <string> -t --timing <string> -o --output <string> --multi <int> --limit <int> --cores <int> --name <string> --distributed <int>
  • -w --wav input directory path to .wav files
  • -t --timing input directory path to timing files
  • -o --output output directory path to output dataset
  • OPTIONAL: --multi 1 collects STFTs using frame_size of [2048, 1024, 4096], 0 collects STFTs using frame_size of [2048]; default is 0
  • OPTIONAL: --limit > 0 stops data collection at limit, -1 means unlimited; default is -1
  • OPTIONAL: --cores > 0 sets the number of cores to use when collecting data; -1 means uses the number of physical cores; default is 1
  • OPTIONAL: --name name to give the dataset; default names dataset based on the configuration parameters
  • OPTIONAL: --distributed 0 creates a single dataset, 1 creates a distributed dataset; default is 0

Training Model

Once training dataset has been created, run train.py.

python train.py -i --input <string> -o --output <string> -d --difficulty <int> --lookback <int> --limit <int> --name <string> --log <string>
  • -i --input input directory path to training dataset
  • -o --output output directory path to save model
  • OPTIONAL: -d --difficulty [0, 1, 2, 3, 4] sets the song difficulty to use when training to ["challenge", "hard", "medium", "easy", "beginner"], respectively; default is 0 or "challenge"
  • OPTIONAL: --lookback > 2 uses timeseries based on lookback when modeling; default is 3
  • OPTIONAL: --limit > 0 limits the amount of training samples used during training, -1 uses all the samples; default is -1
  • OPTIONAL: --name name to give the finished model; default names model based on dat aset used
  • OPTIONAL: --log output directory path to store tensorboard data

TODO

  • End-to-end unit tests for all modules

Credits

Owner
Chimezie Iwuanyanwu
Software Engineer
Chimezie Iwuanyanwu
Pytorch Geometric Tutorials

Pytorch Geometric Tutorials

Antonio Longa 648 Jan 08, 2023
Code for reproducing key results in the paper "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets"

Status: Archive (code is provided as-is, no updates expected) InfoGAN Code for reproducing key results in the paper InfoGAN: Interpretable Representat

OpenAI 1k Dec 19, 2022
HyperPose is a library for building high-performance custom pose estimation applications.

HyperPose is a library for building high-performance custom pose estimation applications.

TensorLayer Community 1.2k Jan 04, 2023
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2022/01/05 By another round of training based on previous weights, our model also achieved a better performance on ACDC (91.61% DSC). W

dotman 92 Dec 25, 2022
HIVE: Evaluating the Human Interpretability of Visual Explanations

HIVE: Evaluating the Human Interpretability of Visual Explanations Project Page | Paper This repo provides the code for HIVE, a human evaluation frame

Princeton Visual AI Lab 16 Dec 13, 2022
YOLOv7 - Framework Beyond Detection

🔥🔥🔥🔥 YOLO with Transformers and Instance Segmentation, with TensorRT acceleration! 🔥🔥🔥

JinTian 3k Jan 01, 2023
The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.

SuperGen The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding. Requirements Before running, you

Yu Meng 38 Dec 12, 2022
Dataset para entrenamiento de yoloV3 para 4 clases

Deteccion de objetos en video Este repo basado en el proyecto PyTorch YOLOv3 para correr detección de objetos sobre video. Construí sobre este proyect

1 Nov 01, 2021
Pose Transformers: Human Motion Prediction with Non-Autoregressive Transformers

Pose Transformers: Human Motion Prediction with Non-Autoregressive Transformers This is the repo used for human motion prediction with non-autoregress

Idiap Research Institute 26 Dec 14, 2022
Code for the paper "TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks"

TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks This is a Python3 / Pytorch implementation of TadGAN paper. The associated

Arun 92 Dec 03, 2022
Maximum Spatial Perturbation for Image-to-Image Translation (Official Implementation)

MSPC for I2I This repository is by Yanwu Xu and contains the PyTorch source code to reproduce the experiments in our CVPR2022 paper Maximum Spatial Pe

51 Dec 14, 2022
HyperaPy: An automatic hyperparameter optimization framework ⚡🚀

hyperpy HyperPy: An automatic hyperparameter optimization framework Description HyperPy: Library for automatic hyperparameter optimization. Build on t

Sergio Mora 7 Sep 06, 2022
A Dataset of Python Challenges for AI Research

Python Programming Puzzles (P3) This repo contains a dataset of python programming puzzles which can be used to teach and evaluate an AI's programming

Microsoft 850 Dec 24, 2022
This is an official source code for implementation on Extensive Deep Temporal Point Process

Extensive Deep Temporal Point Process This is an official source code for implementation on Extensive Deep Temporal Point Process, which is composed o

Haitao Lin 8 Aug 15, 2022
Code for "Human Pose Regression with Residual Log-likelihood Estimation", ICCV 2021 Oral

Human Pose Regression with Residual Log-likelihood Estimation [Paper] [arXiv] [Project Page] Human Pose Regression with Residual Log-likelihood Estima

JeffLi 347 Dec 24, 2022
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 04, 2023
Code for the IJCAI 2021 paper "Structure Guided Lane Detection"

SGNet Project for the IJCAI 2021 paper "Structure Guided Lane Detection" Abstract Recently, lane detection has made great progress with the rapid deve

Jinming Su 27 Dec 08, 2022
Connecting Java/ImgLib2 + Python/NumPy

imglyb imglyb aims at connecting two worlds that have been seperated for too long: Python with numpy Java with ImgLib2 imglyb uses jpype to access num

ImgLib2 29 Dec 21, 2022
Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-like Documents.

Value Retrieval with Arbitrary Queries for Form-like Documents Introduction Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-

Salesforce 13 Sep 15, 2022
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

Jia Research Lab 137 Dec 14, 2022