Direct design of biquad filter cascades with deep learning by sampling random polynomials.

Related tags

Deep LearningIIRNet
Overview

IIRNet

Direct design of biquad filter cascades with deep learning by sampling random polynomials.

License Open In Colab arXiv

Usage

git clone https://github.com/csteinmetz1/IIRNet.git
pip install .

Filter design

Start designing filters with just a few lines of code. In this example (demos/basic.py ) we create a 32nd order IIR filter to match an arbitrary response that we define over a few points. Internally, this specification will be interpolated to 512 points.

import torch
import numpy as np
import scipy.signal
import matplotlib.pyplot as plt
from iirnet.designer import Designer

# first load IIRNet with pre-trained weights
designer = Designer()

n = 32  # Desired filter order (4, 8, 16, 32, 64)
m = [0, -3, 0, 12, 0, -6, 0]  # Magnitude response specification
mode = "linear"  # interpolation mode for specification
output = "sos"  # Output type ("sos", or "ba")

# now call the designer with parameters
sos = designer(n, m, mode=mode, output=output)

# measure and plot the response
w, h = scipy.signal.sosfreqz(sos.numpy(), fs=2)

# interpolate the target for plotting
m_int = torch.tensor(m).view(1, 1, -1).float()
m_int = torch.nn.functional.interpolate(m_int, 512, mode=mode)

fig, ax = plt.subplots(figsize=(6, 3))
plt.plot(w, 20 * np.log10(np.abs(h)), label="Estimation")
plt.plot(w, m_int.view(-1), label="Specification")
# .... more plotting ....

See demos/basic.py for the full script.

Training

We provide a set of shell scripts that will launch training jobs that reproduce the experiments from the paper in configs/. These should be launched from the top level after installing.

./configs/train_hidden_dim.sh
./configs/filter_method.sh
./configs/filter_order.sh

Evaluation

Running the evaluation will require both the pre-trained models (or models you trained yourself) along with the HRTF and Guitar cabinet datasets. These datasets can be downloaded as follows:

First, change to the data directory and then run the download script.

cd data
./dl.sh

Note, you may need to install 7z if you don't already have it. brew install p7zip on macOS

Next download the pre-trained checkpoints if you haven't already.

mkdir logs
cd logs 
wget https://zenodo.org/record/5550275/files/filter_method.zip
wget https://zenodo.org/record/5550275/files/filter_order.zip
wget https://zenodo.org/record/5550275/files/hidden_dim.zip

unzip filter_method.zip
unzip filter_order.zip
unzip hidden_dim.zip

rm filter_method.zip
rm filter_order.zip
rm hidden_dim.zip

Now you can run the evaluation on checkpoints from the three different experiments as follows.

python eval.py logs/filter_method --yw --sgd --guitar_cab --hrtf --filter_order 16
python eval.py logs/hidden_dim --yw --sgd --guitar_cab --hrtf --filter_order 16

For the filter order experiment we need to run the eval script across all models for every order.

python eval.py logs/filter_order --guitar_cab --hrtf --filter_order 4
python eval.py logs/filter_order --guitar_cab --hrtf --filter_order 8
python eval.py logs/filter_order --guitar_cab --hrtf --filter_order 16
python eval.py logs/filter_order --guitar_cab --hrtf --filter_order 32
python eval.py logs/filter_order --guitar_cab --hrtf --filter_order 64

Note: Requires PyTorch >=1.8

Filter methods

ID Sampling method Name
(A) Normal coefficients normal_poly
(B) Normal biquads normal_biquad
(C) Uniform disk uniform_disk
(D) Uniform magnitude disk uniform_mag_disk
(E) Characteristic char_poly
(F) Uniform parametric uniform_parametric

Citation

 @article{colonel2021iirnet,
    title={Direct design of biquad filter cascades with deep learning by sampling random polynomials},
    author={Colonel, Joseph and Steinmetz, Christian J. and Michelen, Marcus and Reiss, Joshua D.},
    booktitle={arXiv:2110.03691},
    year={2021}}
Owner
Christian J. Steinmetz
Building tools for musicians and audio engineers (often with machine learning). PhD Student at Queen Mary University of London.
Christian J. Steinmetz
Official Implement of CVPR 2021 paper “Cross-Modal Collaborative Representation Learning and a Large-Scale RGBT Benchmark for Crowd Counting”

RGBT Crowd Counting Lingbo Liu, Jiaqi Chen, Hefeng Wu, Guanbin Li, Chenglong Li, Liang Lin. "Cross-Modal Collaborative Representation Learning and a L

37 Dec 08, 2022
Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs

Continuous Query Decomposition This repository contains the official implementation for our ICLR 2021 (Oral) paper, Complex Query Answering with Neura

UCL Natural Language Processing 71 Dec 29, 2022
A computer vision pipeline to identify the "icons" in Christian paintings

Christian-Iconography A computer vision pipeline to identify the "icons" in Christian paintings. A bit about iconography. Iconography is related to id

Rishab Mudliar 3 Jul 30, 2022
A PyTorch version of You Only Look at One-level Feature object detector

PyTorch_YOLOF A PyTorch version of You Only Look at One-level Feature object detector. The input image must be resized to have their shorter side bein

Jianhua Yang 25 Dec 30, 2022
SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement

SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement This repository implements the approach described in SporeAgent: Reinforced

Dominik Bauer 5 Jan 02, 2023
Post-training Quantization for Neural Networks with Provable Guarantees

Post-training Quantization for Neural Networks with Provable Guarantees Authors: Jinjie Zhang ( Yixuan Zhou 2 Nov 29, 2022

This is the official github repository of the Met dataset

The Met dataset This is the official github repository of the Met dataset. The official webpage of the dataset can be found here. What is it? This cod

Nikolaos-Antonios Ypsilantis 35 Dec 17, 2022
Code for AutoNL on ImageNet (CVPR2020)

Neural Architecture Search for Lightweight Non-Local Networks This repository contains the code for CVPR 2020 paper Neural Architecture Search for Lig

Yingwei Li 104 Aug 31, 2022
Simple (but Strong) Baselines for POMDPs

Recurrent Model-Free RL is a Strong Baseline for Many POMDPs Welcome to the POMDP world! This repo provides some simple baselines for POMDPs, specific

Tianwei V. Ni 172 Dec 29, 2022
A large dataset of 100k Google Satellite and matching Map images, resembling pix2pix's Google Maps dataset.

Larger Google Sat2Map dataset This dataset extends the aerial ⟷ Maps dataset used in pix2pix (Isola et al., CVPR17). The provide script download_sat2m

34 Dec 28, 2022
The AWS Certified SysOps Administrator

The AWS Certified SysOps Administrator – Associate (SOA-C02) exam is intended for system administrators in a cloud operations role who have at least 1 year of hands-on experience with deployment, man

Aiden Pearce 32 Dec 11, 2022
Multi-task head pose estimation in-the-wild

Multi-task head pose estimation in-the-wild We provide C++ code in order to replicate the head-pose experiments in our paper https://ieeexplore.ieee.o

Roberto Valle 26 Oct 06, 2022
iBOT: Image BERT Pre-Training with Online Tokenizer

Image BERT Pre-Training with iBOT Official PyTorch implementation and pretrained models for paper iBOT: Image BERT Pre-Training with Online Tokenizer.

Bytedance Inc. 435 Jan 06, 2023
A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)

Library | Paper | Slack We released two versions of OAG-BERT in CogDL package. OAG-BERT is a heterogeneous entity-augmented academic language model wh

THUDM 58 Dec 17, 2022
Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks

OnsagerNet Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks This is the original pyTorch implemenati

Haijun.Yu 3 Aug 24, 2022
Code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in Video".

Consistent Depth of Moving Objects in Video This repository contains training code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in

Google 203 Jan 05, 2023
💡 Learnergy is a Python library for energy-based machine learning models.

Learnergy: Energy-based Machine Learners Welcome to Learnergy. Did you ever reach a bottleneck in your computational experiments? Are you tired of imp

Gustavo Rosa 57 Nov 17, 2022
NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM

NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM Automatic Evaluation Metric described in the papers BaryScore (EM

Pierre Colombo 28 Dec 28, 2022
IAST: Instance Adaptive Self-training for Unsupervised Domain Adaptation (ECCV 2020)

This repo is the official implementation of our paper "Instance Adaptive Self-training for Unsupervised Domain Adaptation". The purpose of this repo is to better communicate with you and respond to y

CVSM Group - email: <a href=[email protected]"> 84 Dec 12, 2022
Paddle pit - Rethinking Spatial Dimensions of Vision Transformers

基于Paddle实现PiT ——Rethinking Spatial Dimensions of Vision Transformers,arxiv 官方原版代

Hongtao Wen 4 Jan 15, 2022