Hotplugger: Real USB Port Passthrough for VFIO/QEMU!

Related tags

Hardwarehotplugger
Overview

Hotplugger: Real USB Port Passthrough for VFIO/QEMU!

Welcome to Hotplugger! This app, as the name might tell you, is a combination of some scripts (python, yaml, udev rules and some QEMU args) to allow you to pass through an actual USB port into a VM. Instead of passing the USB root hub (which could have the side effect of passing all the ports, including the ones you didn't want to) or another PCIe hub or something, you can just pass a specific USB port to a VM and have the others free for anything else. Plus, it saves you from using the vfio-pci driver for the USB root hub, so you can keep using it for evdev or other things on the VM host.

Requirements

  • monitor.py and hotplugger.py require Python 3
  • Only tested with QEMU 5.0.0. Untested with older or newer versions.

Quick start (Ubuntu 20.10)

  1. git clone https://github.com/darkguy2008/hotplugger.git

  2. (Optional) run python3 monitor.py and follow the prompts. Basically once you hit Enter you have to plug and unplug an USB device (a thumbdrive or audio device preferred) into the USB ports that you want to know their DEVPATH route from. This will help you identify them so you can write them into config.yaml in the ports array. This array only accepts DEVPATH routes that UDEV generates.

  3. Edit config.yaml. It must stay in the same folder as monitor.py and hotplugger.py. Look at the current example: It's set for a Windows VM (the name doesn't matter, as long as it's unique within the entries of the same file). Make sure the socket property matches the file path of the QEMU chardev device pointing to an Unix domain socket file and in the ports array put the list of the udev DEVPATH of the USB ports you want to pass through to that VM:

    virtual_machines:
    
      windows:
        socket: /home/dragon/vm/test/qmp-sock
        ports:
          - /devices/pci0000:00/0000:00:14.0/usb3/3-1
          - /devices/pci0000:00/0000:00:14.0/usb3/3-2
          - /devices/pci0000:00/0000:00:14.0/usb4/4-1
          - /devices/pci0000:00/0000:00:14.0/usb4/4-2
    
  4. Create an /etc/udev/rules.d/99-zzz-local.rules file with the following content:

    SUBSYSTEM=="usb", ACTION=="add", RUN+="/bin/bash -c 'python3 /path-to-hotplugger/hotplugger.py >> /tmp/hotplugger.log' 2>&1"
    SUBSYSTEM=="usb", ACTION=="remove", RUN+="/bin/bash -c 'python3 /path-to-hotplugger/hotplugger.py >> /tmp/hotplugger.log' 2>&1"
    

    Make sure to change path-to-hotplugger with the path where you cloned the repo to, or installed the package. It can be simplified, but this one is useful in case you want to debug and see what's going on. Otherwise, proceed with a simpler file:

    SUBSYSTEM=="usb", ACTION=="add", RUN+="/bin/bash -c 'python3 /path-to-hotplugger/hotplugger.py'"
    SUBSYSTEM=="usb", ACTION=="remove", RUN+="/bin/bash -c 'python3 /path-to-hotplugger/hotplugger.py'"
    
  5. Create the QMP monitor Unix domain socket if you haven't already in your QEMU args. I use this:

    -chardev socket,id=mon1,server,nowait,path=./qmp-sock
    -mon chardev=mon1,mode=control,pretty=on
    
  6. Have a coffee!

Libvirt setup

This is a work in progress, but here's some steps to get you started:

  1. Edit your VM's XML config like this:

    1. <domain type='kvm' xmlns:qemu='http://libvirt.org/schemas/domain/qemu/1.0'>
        <name>QEMUGuest1name>
        <uuid>c7a5fdbd-edaf-9455-926a-d65c16db1809uuid>
        ...
        <qemu:commandline>
          <qemu:arg value='-chardev'/>
          <qemu:arg value='socket,id=mon1,server,nowait,path=/tmp/my-vm-sock'/>
          <qemu:arg value='-mon'/>
          <qemu:arg value='chardev=mon1,mode=control,pretty=on'/>
        qemu:commandline>
      domain>

      Add the xmlns attribute and the QEMU commandline arguments like that. The /tmp/my-vm-sock is the name of an unix domain socket. You can use any, just make sure to also put the same path in the config.yaml file.

  2. If you get a permissions issue, edit /etc/libvirt/qemu.conf and add security_driver = "none"to it to fix apparmor being annoying about it.

How it works

  1. The udev rule launches the script on every USB event. For each USB add/remove action there's around 3 to 5+ events. This allows the app to act at any step in the action lifecycle.
  2. In the first step it gets the kernel environment variables from udev and stores them in a temp file. In those variables, the DEVPATH, the DEVNUM (host address in QEMU, it seems to change and is sequential...) and the BUSNUM (bus address in QEMU) are captured. For the subsequent events, the following steps are run:
    1. It requests QEMU through the Unix socket and the info usbhost QMP command the USB info from the host. This gives it an extra field: The host port where the device is also connected to. Since I got the host and bus addresses in the first event, I can use that to parse through the info usbhost command's output and find the port connected to the device.
    2. If the port is found, using the device_add command, a new usb-host device is added using the USB bus and port we got in the previous step, and assigns it a predictable ID that it can use to unplug the device afterwards. To add this of course, the VM should have a usb-xhci device I think. Not sure if it's required or not, but I prefer to add it as I have USB 3.0 ports and devices.
    3. The temp file is cleared once the device_add command has run successfully.

Steps 2.1, 2.2 and 2.3 are run on every udev event. For instance, for an audio device it gets 3 or 4 events: One for the HID device, and two or so for the audio devices. My audio device (Corsair Void Elite Wireless) has both stereo audio and a communications device (mono audio, for mic) so for a single dongle like that I get those many events. Since these steps are ran on all the events, there's multiple chances to do the hotplug action. When one of them succeeds, the others will silently fail as QEMU will say that the same device ID is being used, so all is good.

Troubleshooting

If for some reason the app doesn't seem to work, try these methods:

  • Remove the /tmp folder where hotplugger.py is located
  • Reboot the computer
  • Reboot udev: sudo udevadm control --reload-rules && sudo udevadm trigger
  • View udev's logfile: sudo service udev restart && sudo udevadm control --log-priority=debug && journalctl -f | grep -i hotplugger
  • If you want to see what will be run when you plug a device, try with this command to simulate an udev event: udevadm test $(udevadm info -a --path=/devices/pci0000:00/0000:00:14.0/usb3/3-1/3-1:1.0) --action=add replacing --path with the path of the USB port down to the device itself (in this case, I had a device connected to the usb3/3-1 port, identified as 3-1:1.0.

Thank you!

A lot of work and sleepless nights were involved in this procedure, so if this app helps you in any way or another, please consider sending a small donation, it helps a lot in these tough times!

Changelog

(2020-02-05)

  • Initial changelog writing
  • App was refactored a bit with improved python mad skillz. It also seems to be a bit more stable and robust, it doesn't hang much anymore and USB detection seems to work better. This is due to the fact that I added a stupid 1-second delay after all the USB UDEV events have gone through. Since there's no way to know when UDEV has "finished" sending all the events (and there could be a lot more) the commands being sent to QEMU to add the device will have to wait 1 second now. While it's not ideal, it should be enough to avoid a VM hanging up and I can live with that.
Owner
DARKGuy (Alemar)
DARKGuy (Alemar)
A simple program to make MSI Modern 15 speaker and microphone mute led work.

MSI Modern 15 sound led fixup for linux A simple program to fix the MSI Modern 15 speaker and microphone mute LEDs. Installation Requirements pulsectl

Seyed Danial Movahed 4 Oct 18, 2022
Python module for the qwiic serial control motor driver

Qwiic_SCMD_Py Python module for the qwiic motor driver This python package is a port of the existing SparkFun Serial Controlled Motor Driver Arduino L

SparkFun Electronics 6 Dec 06, 2022
Technical Answers to Real-World Problems. Evolution of Watering Manually to Watering Automatically.

Automatic Watering System using Soil Moisture Sensor and RTC Timer with Arduino Technical Answers to Real-World Problems Know the plant, Grow the plan

NelakurthiSudheer 3 Jan 03, 2022
Home Assistant custom integration to fetch data from Powerpal

Powerpal custom component for Home Assistant Component to integrate with powerpal. This repository and integration is not affiliated with Powerpal. Th

Lawrence 32 Jan 07, 2023
Cow Feeder is a bot automatically execute trade on cowswap

Cow Feeder is a bot automatically execute trade on cowswap, includes functions: Monitoring Ethereum network gas price and execute trade whe

6 Apr 20, 2022
Controlling fireworks with micropython

Controlling-fireworks-with-micropython How the code works line 1-4 from machine

Montso Mokake 1 Jan 08, 2022
A Simple Python KeyLogger App

✨ Kurulum Uygulamayı bilgisayarınızda kullana bilmek için bazı işlemler yapmanız gerekiyor. Aşağıdaki yönlendirmeleri takip ederek bunu yapabilirsiniz

VorteX 7 Jun 11, 2022
A python script to poll RPi GPIO pins and subscribe and publish their state via MQTT

MQTT-GPIO A python script to poll RPi GPIO pins and subscribe and publish their state via MQTT using TLS. This script is short and meant to be edited

23 Oct 12, 2021
Python script: Enphase Envoy mqtt json for Home Assistant

A Python script that takes a real time stream from Enphase Envoy and publishes to a mqtt broker. This can then be used within Home Assistant or for other applications. The data updates at least once

29 Dec 27, 2022
Home Assistant integration for energy consumption data from UK SMETS (Smart) meters using the Hildebrand Glow API.

Hildebrand Glow (DCC) Integration Home Assistant integration for energy consumption data from UK SMETS (Smart) meters using the Hildebrand Glow API. T

Aniket 153 Dec 30, 2022
Smart Tech Automation Remote via Kinematics Gesture control for IoT devices

STARK Smart Tech Automation Remote via Kinematics Gesture control for IoT devices View Demo · Report Bug · Request Feature Table of Contents About The

Juseong (Joe) Kim 1 Jan 29, 2022
This tool emulates an EMV-CAP device, to illustrate the article "Banque en ligne : à la decouverte d'EMV-CAP" published in MISC

About This tool emulates an EMV-CAP device, to illustrate the article "Banque en ligne : à la decouverte d'EMV-CAP" published in MISC, issue #56 and f

Philippe Teuwen 28 Nov 21, 2022
This is a collection of python modules that interact with the Ryze Tello drone.

This is a collection of python modules that interact with the Ryze Tello drone.

DJI-SDK 1.2k Jan 03, 2023
Raspberry Pi Pico and LoRaWAN from CircuitPython

Raspberry Pi Pico and LoRaWAN from CircuitPython Enable LoRaWAN communications on your Raspberry Pi Pico or any RP2040-based board using CircuitPython

Alasdair Allan 15 Oct 08, 2022
Self Driving Car Prototype

Package Delivery Rover 🚀 This project is a prototype of Self Driving Car. It's based on embedded systems, to meet the current requirement of delivery

Abhishek Pawar 1 Oct 31, 2021
Andreas Frisch 1 Jan 10, 2022
Designed a system that can efficiently sort recyclables and transfer them to corresponding bins using Python, a Raspberry Pi, and Quanser Labs.

System for Sorting and Recycling Containers - Project 3 Table of contents Overview The challenge Screenshot My process Built with Code snippets What I

Mit Patel 2 Dec 02, 2022
Code for the paper "Planning with Diffusion for Flexible Behavior Synthesis"

Planning with Diffusion Training and visualizing of diffusion models from Planning with Diffusion for Flexible Behavior Synthesis. Guided sampling cod

Michael Janner 310 Jan 07, 2023
Robot Framework keyword library wrapper for atlassian-python-api

Robot Framework keyword library wrapper for atlassian-python-api

Marcin Koperski 3 Jul 29, 2022
Using a raspberry pi, we listen to the coffee machine and count the number of coffee consumption

A typical datarootsian consumes high-quality fresh coffee in their office environment. The board of dataroots had a very critical decision by the end of 2021-Q2 regarding coffee consumption.

dataroots 51 Nov 21, 2022