Info for The Great DataTas plot-a-thon

Overview

The Great DataTas plot-a-thon

Datatas is organising a Data Visualisation competition: The Great DataTas plot-a-thon We will be using Tidy Tuesday data from 2020-09-22 for our competition. We have chosen a non-scientific dataset for participants to create beautiful plots, so anyone can enter our competition.

Our rules for entry are:

  • Entries should have code and final figure available in a public GitHub repository (contact us if you need help with this).
  • Entries can use any programming language.
  • Entries must have a Creative Commons license because we will share them via our social media and GitHub repo.
  • Editing software is allowed but discouraged.
  • External supporting data is allowed and encouraged.
  • Entries must be submitted by the end of day of Sunday, November 21.
    Optional:
  • Provide your twitter handle.

The criteria for choosing the winner are:

  • Three independent judges from EchoView, BOM and UTAS/CLEX will be judging the entries.
  • Figures must be reproducible.
  • Scripts must be easy to read and understand.
  • Figures must convey main message clearly.
  • Scripts must be developed by person submitting the entry, no copying.

Picture of the Coveted Trophy

Event Timing

We will be having an info session on Wednesday, November 10th to explain all details of this competition. Join us in person at IMAS or online to find out how you can participate.

  • Competition starts at 4pm November 10th following the DataTas event
  • Entries are due midnight (11:59 pm) on November 21st, giving you 10 days to put together your entry. During those ten days, we encourage you to work with others and share ideas, but your final entry must be your own work.
  • The winners will be announced at our final event of the year, on Thursday, November 25th at 2pm in the IMAS Aurora Lecture Theatre. Only one person can win the DataTas trophy and be crowned the plot-a-thon champion!

About the Data (From The Tidy Tuesday Page)

Picture of the Himalayas from Wikipedia

Himalayan Climbing Expeditions

The data this week comes from The Himalayan Database.

The Himalayan Database is a compilation of records for all expeditions that have climbed in the Nepal Himalaya. The database is based on the expedition archives of Elizabeth Hawley, a longtime journalist based in Kathmandu, and it is supplemented by information gathered from books, alpine journals and correspondence with Himalayan climbers.

The data cover all expeditions from 1905 through Spring 2019 to more than 465 significant peaks in Nepal. Also included are expeditions to both sides of border peaks such as Everest, Cho Oyu, Makalu and Kangchenjunga as well as to some smaller border peaks. Data on expeditions to trekking peaks are included for early attempts, first ascents and major accidents.

h/t to Alex Cookson for sharing and cleaning this data!

This blog post by Alex Cookson explores the data in greater detail.

I don't want to underplay that there are some positives and some awful negatives for native Sherpa climbers. One-third of Everest deaths are Sherpa Climbers.

Also National Geographic has 5 Ways to help the Sherpas of Everest.

Get the data here

# Get the Data

# Read in with tidytuesdayR package 
# Install from CRAN via: install.packages("tidytuesdayR")
# This loads the readme and all the datasets for the week of interest

# Either ISO-8601 date or year/week works!

tuesdata <- tidytuesdayR::tt_load('2020-09-22')
tuesdata <- tidytuesdayR::tt_load(2020, week = 39)

climbers <- tuesdata$climbers

# Or read in the data manually

members <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-09-22/members.csv')
expeditions <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-09-22/expeditions.csv')
peaks <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-09-22/peaks.csv')

For other languages, see the additional files in this repository.

Data Dictionary

peaks.csv

variable class description
peak_id character Unique identifier for peak
peak_name character Common name of peak
peak_alternative_name character Alternative name of peak (for example, the "Mount Everest" is "Sagarmatha" in Nepalese)
height_metres double Height of peak in metres
climbing_status character Whether the peak has been climbed
first_ascent_year double Year of first successful ascent, if applicable
first_ascent_country character Country name(s) of expedition members part of the first ascent. Can have multiple values if members were from different countries. Country name is as of date of ascent (for example, "W Germany" for ascents before 1990).
first_ascent_expedition_id character Unique identifier for expedition. Can be linked to expeditions or members tables.

expeditions.csv

variable class description
expedition_id character Unique identifier for expedition. Can be linked to peaks or members tables.
peak_id character Unique identifier for peak. Can be linked to peaks table.
peak_name character Common name for peak
year double Year of expedition
season character Season of expedition (Spring, Summer, etc.)
basecamp_date date Date of expedition arrival at basecamp
highpoint_date date Date of expedition summiting the peak for the first time or, if peak wasn't reached, date of reaching its highpoint
termination_date date Date the expedition was terminated
termination_reason character Primary reason the expedition was terminated. There are two possibilities for a successful expeditions, depending on whether the main peak or a sub-peak was summitted.
highpoint_metres double Elevation highpoint of the expedition
members double Number of expedition members. For expeditions in Nepal, this is usually the number of foreigners listed on the expedition permit. For expeditions in China, this is usually the number of non-hired members.
member_deaths double Number of expeditions members who died
hired_staff double Number of hired staff who went above basecamp
hired_staff_deaths double Number of hired staff who died
oxygen_used logical Whether oxygen was used by at least one member of the expedition
trekking_agency character Name of the trekking agency

members.csv

variable class description
expedition_id character Unique identifier for expedition. Can be linked to peaks or members tables.
member_id character Unique identifier for the person. This is not consistent across expeditions, so you cannot use a single member_id to look up all expeditions a person was part of.
peak_id character Unique identifier for peak. Can be linked to peaks table.
peak_name character Common name for peak
year double Year of expedition
season character Season of expedition (Spring, Summer, etc.)
sex character Sex of the person
age double Age of the person. Depending on the best available data, this could be as of the summit date, the date of death, or the date of arrival at basecamp.
citizenship character Citizenship of the person
expedition_role character Role of the person on the expedition
hired logical Whether the person was hired by the expedition
highpoint_metres double Elevation highpoint of the person
success logical Whether the person was successful in summitting a main peak or sub-peak, depending on the goal of expedition
solo logical Whether the person attempted a solo ascent
oxygen_used logical Whether the person used oxygen
died logical Whether the person died
death_cause character Primary cause of death
death_height_metres double Height at which the person died
injured logical Whether the person was injured
injury_type character Primary cause of injury
injury_height_metres double Height at which the injury occurred

Cleaning Script (R Only, see files in repo for Python and R.)

# Libraries
library(tidyverse)
library(janitor)


# Peaks
peaks <- read_csv("./himalayan-expeditions/raw/peaks.csv") %>%
  transmute(
    peak_id = PEAKID,
    peak_name = PKNAME,
    peak_alternative_name = PKNAME2,
    height_metres = HEIGHTM,
    climbing_status = PSTATUS,
    first_ascent_year = PYEAR,
    first_ascent_country = PCOUNTRY,
    first_ascent_expedition_id = PEXPID
  ) %>%
  mutate(
    climbing_status = case_when(
      climbing_status == 0 ~ "Unknown",
      climbing_status == 1 ~ "Unclimbed",
      climbing_status == 2 ~ "Climbed"
    )
  )

# Create small dataframe of peak names to join to other dataframes
peak_names <- peaks %>%
  select(peak_id, peak_name)

# Expeditions
expeditions <- read_csv("./himalayan-expeditions/raw/exped.csv") %>%
  left_join(peak_names, by = c("PEAKID" = "peak_id")) %>%
  transmute(
    expedition_id = EXPID,
    peak_id = PEAKID,
    peak_name,
    year = YEAR,
    season = SEASON,
    basecamp_date = BCDATE,
    highpoint_date = SMTDATE,
    termination_date = TERMDATE,
    termination_reason = TERMREASON,
    # Highpoint of 0 is most likely missing value
    highpoint_metres = ifelse(HIGHPOINT == 0, NA, HIGHPOINT),
    members = TOTMEMBERS,
    member_deaths = MDEATHS,
    hired_staff = TOTHIRED,
    hired_staff_deaths = HDEATHS,
    oxygen_used = O2USED,
    trekking_agency = AGENCY
  ) %>%
  mutate(
    termination_reason = case_when(
      termination_reason == 0 ~ "Unknown",
      termination_reason == 1 ~ "Success (main peak)",
      termination_reason == 2 ~ "Success (subpeak)",
      termination_reason == 3 ~ "Success (claimed)",
      termination_reason == 4 ~ "Bad weather (storms, high winds)",
      termination_reason == 5 ~ "Bad conditions (deep snow, avalanching, falling ice, or rock)",
      termination_reason == 6 ~ "Accident (death or serious injury)",
      termination_reason == 7 ~ "Illness, AMS, exhaustion, or frostbite",
      termination_reason == 8 ~ "Lack (or loss) of supplies or equipment",
      termination_reason == 9 ~ "Lack of time",
      termination_reason == 10 ~ "Route technically too difficult, lack of experience, strength, or motivation",
      termination_reason == 11 ~ "Did not reach base camp",
      termination_reason == 12 ~ "Did not attempt climb",
      termination_reason == 13 ~ "Attempt rumoured",
      termination_reason == 14 ~ "Other"
    ),
    season = case_when(
      season == 0 ~ "Unknown",
      season == 1 ~ "Spring",
      season == 2 ~ "Summer",
      season == 3 ~ "Autumn",
      season == 4 ~ "Winter"
    )
  )

members <-
  read_csv("./himalayan-expeditions/raw/members.csv", guess_max = 100000) %>%
  left_join(peak_names, by = c("PEAKID" = "peak_id")) %>%
  transmute(
    expedition_id = EXPID,
    member_id = paste(EXPID, MEMBID, sep = "-"),
    peak_id = PEAKID,
    peak_name,
    year = MYEAR,
    season = MSEASON,
    sex = SEX,
    age = CALCAGE,
    citizenship = CITIZEN,
    expedition_role = STATUS,
    hired = HIRED,
    # Highpoint of 0 is most likely missing value
    highpoint_metres = ifelse(MPERHIGHPT == 0, NA, MPERHIGHPT),
    success = MSUCCESS,
    solo = MSOLO,
    oxygen_used = MO2USED,
    died = DEATH,
    death_cause = DEATHTYPE,
    # Height of 0 is most likely missing value
    death_height_metres = ifelse(DEATHHGTM == 0, NA, DEATHHGTM),
    injured = INJURY,
    injury_type = INJURYTYPE,
    # Height of 0 is most likely missing value
    injury_height_metres = ifelse(INJURYHGTM == 0, NA, INJURYHGTM)
  ) %>%
  mutate(
    season = case_when(
      season == 0 ~ "Unknown",
      season == 1 ~ "Spring",
      season == 2 ~ "Summer",
      season == 3 ~ "Autumn",
      season == 4 ~ "Winter"
    ),
    age = ifelse(age == 0, NA, age),
    death_cause = case_when(
      death_cause == 0 ~ "Unspecified",
      death_cause == 1 ~ "AMS",
      death_cause == 2 ~ "Exhaustion",
      death_cause == 3 ~ "Exposure / frostbite",
      death_cause == 4 ~ "Fall",
      death_cause == 5 ~ "Crevasse",
      death_cause == 6 ~ "Icefall collapse",
      death_cause == 7 ~ "Avalanche",
      death_cause == 8 ~ "Falling rock / ice",
      death_cause == 9 ~ "Disappearance (unexplained)",
      death_cause == 10 ~ "Illness (non-AMS)",
      death_cause == 11 ~ "Other",
      death_cause == 12 ~ "Unknown"
    ),
    injury_type = case_when(
      injury_type == 0 ~ "Unspecified",
      injury_type == 1 ~ "AMS",
      injury_type == 2 ~ "Exhaustion",
      injury_type == 3 ~ "Exposure / frostbite",
      injury_type == 4 ~ "Fall",
      injury_type == 5 ~ "Crevasse",
      injury_type == 6 ~ "Icefall collapse",
      injury_type == 7 ~ "Avalanche",
      injury_type == 8 ~ "Falling rock / ice",
      injury_type == 9 ~ "Disappearance (unexplained)",
      injury_type == 10 ~ "Illness (non-AMS)",
      injury_type == 11 ~ "Other",
      injury_type == 12 ~ "Unknown"
    ),
    death_cause = ifelse(died, death_cause, NA_character_),
    death_height_metres = ifelse(died, death_height_metres, NA),
    injury_type = ifelse(injured, injury_type, NA_character_),
    injury_height_metres = ifelse(injured, injury_height_metres, NA)
  )


### Write to CSV
write_csv(expeditions, "./himalayan-expeditions/expeditions.csv")
write_csv(members, "./himalayan-expeditions/members.csv")
write_csv(peaks, "./himalayan-expeditions/peaks.csv")

Investment and risk technologies maintained by Fortitudo Technologies.

Fortitudo Technologies Open Source This package allows you to freely explore open-source implementations of some of our fundamental technologies under

Fortitudo Technologies 11 Dec 14, 2022
Print matplotlib colors

mplcolors Tired of searching "matplotlib colors" every week/day/hour? This simple script displays them all conveniently right in your terminal emulato

Brandon Barker 32 Dec 13, 2022
a plottling library for python, based on D3

Hello August 2013 Hello! Maybe you're looking for a nice Python interface to build interactive, javascript based plots that look as nice as all those

Mike Dewar 1.4k Dec 28, 2022
Tidy data structures, summaries, and visualisations for missing data

naniar naniar provides principled, tidy ways to summarise, visualise, and manipulate missing data with minimal deviations from the workflows in ggplot

Nicholas Tierney 611 Dec 22, 2022
The Spectral Diagram (SD) is a new tool for the comparison of time series in the frequency domain

The Spectral Diagram (SD) is a new tool for the comparison of time series in the frequency domain. The SD provides a novel way to display the coherence function, power, amplitude, phase, and skill sc

Mabel 3 Oct 10, 2022
又一个云探针

ServerStatus-Murasame 感谢ServerStatus-Hotaru,又一个云探针诞生了(大雾 本项目在ServerStatus-Hotaru的基础上使用fastapi重构了服务端,部分修改了客户端与前端 项目还在非常原始的阶段,可能存在严重的问题 演示站:https://stat

6 Oct 19, 2021
Bar Chart of the number of Senators from each party who are up for election in the next three General Elections

Congress-Analysis Bar Chart of the number of Senators from each party who are up for election in the next three General Elections This bar chart shows

11 Oct 26, 2021
Glue is a python project to link visualizations of scientific datasets across many files.

Glue Glue is a python project to link visualizations of scientific datasets across many files. Click on the image for a quick demo: Features Interacti

675 Dec 09, 2022
It's an application to calculate I from v and r. It can also plot a graph between V vs I.

Ohm-s-Law-Visualizer It's an application to calculate I from v and r using Ohm's Law. It can also plot a graph between V vs I. Story I'm doing my Unde

Sihab Sahariar 1 Nov 20, 2021
Interactive Dashboard for Visualizing OSM Data Change

Dashboard and intuitive data downloader for more interactive experience with interpreting osm change data.

1 Feb 20, 2022
Generate visualizations of GitHub user and repository statistics using GitHub Actions.

GitHub Stats Visualization Generate visualizations of GitHub user and repository statistics using GitHub Actions. This project is currently a work-in-

Aditya Thakekar 1 Jan 11, 2022
This is a sorting visualizer made with Tkinter.

Sorting-Visualizer This is a sorting visualizer made with Tkinter. Make sure you've installed tkinter in your system to use this visualizer pip instal

Vishal Choubey 7 Jul 06, 2022
An interactive dashboard for visualisation, integration and classification of data using Active Learning.

AstronomicAL An interactive dashboard for visualisation, integration and classification of data using Active Learning. AstronomicAL is a human-in-the-

45 Nov 28, 2022
Info for The Great DataTas plot-a-thon

The Great DataTas plot-a-thon Datatas is organising a Data Visualisation competition: The Great DataTas plot-a-thon We will be using Tidy Tuesday data

2 Nov 21, 2021
Domain Connectivity Analysis Tools to analyze aggregate connectivity patterns across a set of domains during security investigations

DomainCAT (Domain Connectivity Analysis Tool) Domain Connectivity Analysis Tool is used to analyze aggregate connectivity patterns across a set of dom

DomainTools 34 Dec 09, 2022
This is a Boids Simulation, written in Python with Pygame.

PyNBoids A Python Boids Simulation This is a Boids simulation, written in Python3, with Pygame2 and NumPy. To use: Save the pynboids_sp.py file (and n

Nik 17 Dec 18, 2022
Create Badges with stats of Scratch User, Project and Studio. Use those badges in Github readmes, etc.

Scratch-Stats-Badge Create customized Badges with stats of Scratch User, Studio or Project. Use those badges in Github readmes, etc. Examples Document

Siddhesh Chavan 5 Aug 28, 2022
Practical-statistics-for-data-scientists - Code repository for O'Reilly book

Code repository Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python by Peter Bruce, Andrew Bruce, and Peter Gedeck Pub

1.7k Jan 04, 2023
A Python function that makes flower plots.

Flower plot A Python 3.9+ function that makes flower plots. Installation This package requires at least Python 3.9. pip install

Thomas Roder 4 Jun 12, 2022
Sci palettes for matplotlib/seaborn

sci palettes for matplotlib/seaborn Installation python3 -m pip install sci-palettes Usage import seaborn as sns import matplotlib.pyplot as plt impor

Qingdong Su 2 Jun 07, 2022