Movie recommendation using RASA, TigerGraph

Overview

Demo run:

The below video will highlight the runtime of this setup and some sample real-time conversations using the power of RASA + TigerGraph,

IMAGE ALT TEXT HERE

Steps to run this solution:

Step-0:

Step-1: (Scroll down for detailed setup instructions)

  • cd Movie_Chatbot

Terminal-1:

  • $ rasa train
  • $ rasa run -m models --enable-api --cors "*" --debug

Terminal-2:

  • $ rasa run actions

Step-2: (Scroll down for detailed setup instructions)

  • Run tgcloud solution

Project Overview: Movie recommendations using RASA + TigerGraph

Conversational recommendation systems (CRS) using knowledge graphs is a hot topic as they intend to return the best real-time recommendations to users through a multi-turn interactive conversation. CRS allows users to provide their feedback during the conversation, unlike the traditional recommendation systems. CRS can combine the knowledge of the predefined user profile with the current user requirements to output custom yet most relevant recommendations or suggestions. This work will implement a chatbot using the open-source chatbot development framework - RASA and the most powerful, super-fast, and leading cloud graph database - TigerGraph.

NOTE: This help page will not go into the depth of RASA, TigerGraph functionalities. This help page will touch base and demo how TigerGraph can be integrated with RASA.

Technological Stack

Here is the high-level outline of the technological stack used in this demo project,

Putting things to work

Step-1: (RASA) Implement language models, user intents and backend actions

Beginner tutorial: This is a very good spot to learn about setting up a basic chatbot using RASA and understanding the core framework constructs.

Step-1a: Install RASA

Open a new terminal and setup RASA using the below commands:

  • $ python3 -m virtualenv -p python3 .
  • $ source bin/activate
  • $ pip install rasa

Step-1b: Create new RASA project

  • $ rasa init

After the execution of the above command, a new RASA 'Movie_Chatbot' project will be created in the current directory as shown below,

Below is a kick-off conversation with the newly created chatbot,

Ya, that's quite simple to create a chatbot now with RASA!

Step-1c: Define intents, stories, action triggers

Now, navigate to the project folder Movie_Chatbot/data and modify the default nlu.yml and rules.yml files by adding intents, rules for our movie recommendation business usecase as show below,

Step-1d: Install the TigerGraph python library using pip with the below command,

  • pip install pyTigerGraph

Step-1e: Define action endpoints

Now, navigate to the project folder Movie_Chatbot/actions and modify the actions.py file to include TigerGraph connection parameters and action definitions with the respective movie recommendation CSQL query as show below,

Add the defined action method to the domain.yml as shown below,

Here, 'RecommendMovies' is the name of the CSQL query in the tgcloud database which will discuss in detail in the next section.

With this step, we are done with the installation and configuration of the RASA chatbot.

Step-2: (TigerGraph) Setup TigerGraph database and querying APIs

Beginner tutorial: This is a very good spot to learn about setting up a tigergraph database on the cloud and implementing CSQL queries,

Step-2a: Setup tgcloud database

  • Go to, http://tgcloud.io/ and create a new account.

  • Activate the account.

  • Go to, "My Solutions" and click "Create Solution"

  • Select the starter kit as shown below then click Next twice.

  • Provide a solution name, password tags, and subdomain as needed, and then click 'Next'

  • Enter Submit and close your eyes for the magic!

And Yes!, the TigerGraph Movie recommendation Graph database is created. Buckle up a few more things to do!

  • Go to, GraphStudio and 'Load Data' by selecting the *.csv files and hit the 'play' button as shown below.

  • Once the data is loaded, data statistics should display a green 'FINISHED' message as shown below.

  • Go to, 'Write Queries' and implement the CSQL queries here as shown below,

  • Save the CSQL query and publish it using the 'up arrow' button.

  • Lets, test the query by running with a sample input as shown below,

All Set! The TigerGraph Database is up and running. Are we done? Almost! There is one more thing to do!

Step-2b: Configure secret token

  • Let's set up the secret key access to the cloud TigerGraph API as it is very crucial to ensure a secure way of providing access to the data.

  • Go to, Admin Dashboard->Users->Management and define a secret key as shown below,

  • NOTE: Please remember to copy the key to be used in the RASA connection configuration (Movie_ChatBot/actions/actions.py)

Step-3: (Web UI) Setting up a web ui for the RASA chatbot

  • In this work, we are using an open-source javascript-based chatbot UI to interact with the RASA solution we implemented in Step-1.

  • The RASA server endpoint is configured in the widget/static/Chat.js as shown below,

All right, we are one step close to seeing the working of the TigerGraph and RASA integration.

Step-4: (RASA+TigerGraph) Start RASA and run Actions

Run the below commands in separate terminals,

Terminal-1:

  • $ rasa train
  • $ rasa run -m models --enable-api --cors "*" --debug

Terminal-2:

  • $ rasa run actions

Step-5: (ChatBot UI) Open Chatbot User interface

Hit open widget/index.html to start interacting with the TigerBot movie recommendation engine!

Yes, we are DONE!

I hope this source is informative and helpful.

References:

Owner
Sudha Vijayakumar
Graduate student | Aspiring Software Engineer - Applied Data Science AI/ML/DL
Sudha Vijayakumar
Graphical display tools, to help students debug their class implementations in the Carcassonne family of projects

carcassonne_tools Graphical display tools, to help students debug their class implementations in the Carcassonne family of projects NOTE NOTE NOTE The

1 Nov 08, 2021
Open-questions - Open questions for Bellingcat technical contributors

Open questions for Bellingcat technical contributors These are difficult, long-term projects that would contribute to open source investigations at Be

Bellingcat 234 Dec 31, 2022
A simple script that displays pixel-based animation on GitHub Activity

GitHub Activity Animator This project contains a simple Javascript snippet that produces an animation on your GitHub activity tracker. The project als

16 Nov 15, 2021
Some problems of SSLC ( High School ) before outputs and after outputs

Some problems of SSLC ( High School ) before outputs and after outputs 1] A Python program and its output (output1) while running the program is given

Fayas Noushad 3 Dec 01, 2021
Smarthome Dashboard with Grafana & InfluxDB

Smarthome Dashboard with Grafana & InfluxDB This is a complete overhaul of my Raspberry Dashboard done with Flask. I switched from sqlite to InfluxDB

6 Oct 20, 2022
Fast 1D and 2D histogram functions in Python

About Sometimes you just want to compute simple 1D or 2D histograms with regular bins. Fast. No nonsense. Numpy's histogram functions are versatile, a

Thomas Robitaille 237 Dec 18, 2022
plotly scatterplots which show molecule images on hover!

molplotly Plotly scatterplots which show molecule images on hovering over the datapoints! Required packages: pandas rdkit jupyter_dash ➡️ See example.

150 Dec 28, 2022
Fastest Gephi's ForceAtlas2 graph layout algorithm implemented for Python and NetworkX

ForceAtlas2 for Python A port of Gephi's Force Atlas 2 layout algorithm to Python 2 and Python 3 (with a wrapper for NetworkX and igraph). This is the

Bhargav Chippada 227 Jan 05, 2023
Bioinformatics tool for exploring RNA-Protein interactions

Explore RNA-Protein interactions. RNPFind is a bioinformatics tool. It takes an RNA transcript as input and gives a list of RNA binding protein (RBP)

Nahin Khan 3 Jan 27, 2022
Python wrapper for Synoptic Data API. Retrieve data from thousands of mesonet stations and networks. Returns JSON from Synoptic as Pandas DataFrame

☁ Synoptic API for Python (unofficial) The Synoptic Mesonet API (formerly MesoWest) gives you access to real-time and historical surface-based weather

Brian Blaylock 23 Jan 06, 2023
This is a Web scraping project using BeautifulSoup and Python to scrape basic information of all the Test matches played till Jan 2022.

Scraping-test-matches-data This is a Web scraping project using BeautifulSoup and Python to scrape basic information of all the Test matches played ti

Souradeep Banerjee 4 Oct 10, 2022
A small tool to test and visualize protein embeddings and amino acid proportions.

polyprotein_stats A small tool to test and visualize protein embeddings and amino acid proportions. Currently deployed on streamlit.io. Given a set of

2 Jan 07, 2023
A small timeseries transformation API built on Flask and Pandas

#Mcflyin ###A timeseries transformation API built on Pandas and Flask This is a small demo of an API to do timeseries transformations built on Flask a

Rob Story 84 Mar 25, 2022
A concise grammar of interactive graphics, built on Vega.

Vega-Lite Vega-Lite provides a higher-level grammar for visual analysis that generates complete Vega specifications. You can find more details, docume

Vega 4k Jan 08, 2023
CPG represent!

CoolPandasGroup CPG represent! Arianna Brandon Enne Luan Tracie Project requirements: use Pandas to clean and format datasets use Jupyter Notebook to

Enne 3 Feb 07, 2022
Simple and lightweight Spotify Overlay written in Python.

Simple Spotify Overlay This is a simple yet powerful Spotify Overlay. About I have been looking for something like this ever since I got Spotify. I th

27 Sep 03, 2022
Getting started with Python, Dash and Plot.ly for the Data Dashboards team

data_dashboards Getting started with Python, Dash and Plot.ly for the Data Dashboards team Getting started MacOS users: # Install the pyenv version ma

Department for Levelling Up, Housing and Communities 1 Nov 08, 2021
A Python Library for Self Organizing Map (SOM)

SOMPY A Python Library for Self Organizing Map (SOM) As much as possible, the structure of SOM is similar to somtoolbox in Matlab. It has the followin

Vahid Moosavi 497 Dec 29, 2022
又一个云探针

ServerStatus-Murasame 感谢ServerStatus-Hotaru,又一个云探针诞生了(大雾 本项目在ServerStatus-Hotaru的基础上使用fastapi重构了服务端,部分修改了客户端与前端 项目还在非常原始的阶段,可能存在严重的问题 演示站:https://stat

6 Oct 19, 2021
Declarative statistical visualization library for Python

Altair http://altair-viz.github.io Altair is a declarative statistical visualization library for Python. With Altair, you can spend more time understa

Altair 8k Jan 05, 2023