Joint parameterization and fitting of stroke clusters

Overview

StrokeStrip: Joint Parameterization and Fitting of Stroke Clusters

Dave Pagurek van Mossel1, Chenxi Liu1, Nicholas Vining1,2, Mikhail Bessmeltsev3, Alla Sheffer1

1University of British Columbia, 2NVIDIA, 3Université de Montréal

@article{strokestrip,
	title = {StrokeStrip: Joint Parameterization and Fitting of Stroke Clusters},
	author = {Pagurek van Mossel, Dave and Liu, Chenxi and Vining, Nicholas and Bessmeltsev, Mikhail and Sheffer, Alla},
	year = 2021,
	journal = {ACM Transactions on Graphics},
	publisher = {ACM},
	address = {New York, NY, USA},
	volume = 40,
	number = 4,
	doi = {10.1145/3450626.3459777}
}

StrokeStrip jointly parameterizes clusters of strokes (a) that, together, represent strips following a single intended curve (b). We compute the parameterization of this strip (c) restricted to the domain of the input strokes (d), which we then use to produce the parameterized intended curve (d).

Usage

./strokestrip input.scap [...args]

Additional optional arguments:

  • --cut: If your input strokes include sharp back-and-forth turns, this flag will use the Cornucopia library to detect and cut such strokes.
  • --debug: Generate extra SVG outputs to introspect the algorithm
  • --rainbow: Generate an SVG showing parameterized strokes coloured with a rainbow gradient (default is red-to-blue)
  • --widths: Generate fitted widths along with centerlines
  • --taper: Force fitted widths to taper to 0 at endpoints

Input format

Drawings are inputted as .scap files, which encode strokes as polylines. Strokes are contained in pairs of braces { ... }. Each stroke has a unique stroke id and a cluster id shared by all strokes that colleectively make up one intended curve. Polyline samples can omit pressure by setting it to a default value of 0.

#[width]	[height]
@[thickness]
{
	#[stroke_id]	[cluster_id]
	[x1]	[y1]	[pressure1]
	[x2]	[y2]	[pressure2]
	[x3]	[y3]	[pressure3]
	[...etc]
}
[...etc]

Example .scap inputs are found in the examples/ directory.

Stroke clusters for new .scap files can be generated using the StrokeAggregator ground truth labeling program.

Development

Dependencies

Gurobi

This package relies on the Gurobi optimization library, which must be installed and licensed on your machine. If you are at a university, a free academic license can be obtained. This project was build with Gurobi 9.0; if you are using a newer version of Gurobi, update FindGUROBI.cmake to reference your installed version (e.g. change gurobi90 to gurobi91 for version 9.1.)

Eigen 3

Ensure that Eigen is installed and that its directory is included in $CMAKE_PREFIX_PATH.

Building

StrokeStrip is configured with Cmake:

mkdir build
cd build
cmake ..
make
Owner
Dave Pagurek
Programmer and digital artist. MSc from UBC CS '21, UWaterloo Software Engineering '19.
Dave Pagurek
Python scripts form performing stereo depth estimation using the CoEx model in ONNX.

ONNX-CoEx-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the CoEx model in ONNX. Stereo depth estimation on the

Ibai Gorordo 8 Dec 29, 2022
Meli Data Challenge 2021 - First Place Solution

My solution for the Meli Data Challenge 2021

Matias Moreyra 23 Mar 09, 2022
IJCAI2020 & IJCV 2020 :city_sunrise: Unsupervised Scene Adaptation with Memory Regularization in vivo

Seg_Uncertainty In this repo, we provide the code for the two papers, i.e., MRNet:Unsupervised Scene Adaptation with Memory Regularization in vivo, IJ

Zhedong Zheng 348 Jan 05, 2023
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set —— PyTorch implementation This is an unofficial offici

Sicheng Xu 833 Dec 28, 2022
A package related to building quasi-fibration symmetries

qf A package related to building quasi-fibration symmetries. If you'd like to learn more about how it works, see the brief explanation and References

Paolo Boldi 1 Dec 01, 2021
The source code of the paper "Understanding Graph Neural Networks from Graph Signal Denoising Perspectives"

GSDN-F and GSDN-EF This repository provides a reference implementation of GSDN-F and GSDN-EF as described in the paper "Understanding Graph Neural Net

Guoji Fu 18 Nov 14, 2022
BlockUnexpectedPackets - Preventing BungeeCord CPU overload due to Layer 7 DDoS attacks by scanning BungeeCord's logs

BlockUnexpectedPackets This script automatically blocks DDoS attacks that are sp

SparklyPower 3 Mar 31, 2022
Running Google MoveNet Multipose Tracking models on OpenVINO.

MoveNet MultiPose Tracking on OpenVINO

60 Nov 17, 2022
A simple and extensible library to create Bayesian Neural Network layers on PyTorch.

Blitz - Bayesian Layers in Torch Zoo BLiTZ is a simple and extensible library to create Bayesian Neural Network Layers (based on whats proposed in Wei

Pi Esposito 722 Jan 08, 2023
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023
Python and C++ implementation of "MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation". Accepted at LXCV @ CVPR 2021.

MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation This is a PyTorch and LibTorch implementation of MarkerPose: a

Jhacson Meza 47 Nov 18, 2022
RP-GAN: Stable GAN Training with Random Projections

RP-GAN: Stable GAN Training with Random Projections This repository contains a reference implementation of the algorithm described in the paper: Behna

Ayan Chakrabarti 20 Sep 18, 2021
DualGAN-tensorflow: tensorflow implementation of DualGAN

ICCV paper of DualGAN DualGAN: unsupervised dual learning for image-to-image translation please cite the paper, if the codes has been used for your re

Jack Yi 252 Nov 10, 2022
Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network

Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network This repository is the official implementation of Speech Separati

Kai Li (李凯) 116 Nov 09, 2022
Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

Hugging Face 34 Dec 10, 2022
⚾🤖⚾ Automatic baseball pitching overlay in realtime

⚾ Automatically overlaying pitch motion and trajectory with machine learning! This project takes your baseball pitching clips and automatically genera

Tony Chou 240 Dec 05, 2022
When in Doubt: Improving Classification Performance with Alternating Normalization

When in Doubt: Improving Classification Performance with Alternating Normalization Findings of EMNLP 2021 Menglin Jia, Austin Reiter, Ser-Nam Lim, Yoa

Menglin Jia 13 Nov 06, 2022
Unsupervised Video Interpolation using Cycle Consistency

Unsupervised Video Interpolation using Cycle Consistency Project | Paper | YouTube Unsupervised Video Interpolation using Cycle Consistency Fitsum A.

NVIDIA Corporation 100 Nov 30, 2022
A PyTorch based deep learning library for drug pair scoring.

Documentation | External Resources | Datasets | Examples ChemicalX is a deep learning library for drug-drug interaction, polypharmacy side effect and

AstraZeneca 597 Dec 30, 2022
Repository for Driving Style Recognition algorithms for Autonomous Vehicles

Driving Style Recognition Using Interval Type-2 Fuzzy Inference System and Multiple Experts Decision Making Created by Iago Pachêco Gomes at USP - ICM

Iago Gomes 9 Nov 28, 2022