A library for uncertainty representation and training in neural networks.

Related tags

Deep Learningenn
Overview

Epistemic Neural Networks

A library for uncertainty representation and training in neural networks.

Introduction

Many applications in deep learning requires or benefit from going beyond a point estimte and representing uncertainty about the model. The coherent use of Bayes’ rule and probability theory are the gold standard for updating beliefs and estimating uncertainty. But exact computation quickly becomes infeasible for even simple problems. Modern machine learning has developed an effective toolkit for learning in high-dimensional using a simple and coherent convention. Epistemic neural network (ENN) is a library that provides a similarly simple and coherent convention for defining and training neural networks that represent uncertainty over a hypothesis class of models.

Technical overview

In a supervised setting, For input x_i ∈ X and outputs y_i ∈ Y a point estimate f_θ(x) is trained by fitting the observed data D = {(xi, yi) for i = 1, ..., N} by minimizing a loss function l(θ, D) ∈ R. In epistemic neural networks we introduce the concept of an epistemic index z ∈ I ⊆ R^{n_z} distributed according to some reference distribution p_z(·). An augmented epistemic function approximator then takes the form f_θ(x, z); where the function class fθ(·, z) is a neural network. The index z allows unambiguous identification of a corresponding function value and sampling z corresponds to sampling from the hypothesis class of functions.

On some level, ENNs are purely a notational convenience and most existing approaches to dealing with uncertainty in deep learning can be rephrased in this way. For example, an ensemble of point estimates {f_θ1, ..., f_θK } can be viewed as an ENN with θ = (θ1, .., θK), z ∈ {1, .., K}, and f_θ(x, z) := f_θz(x). However, this simplicity hides a deeper insight: that the process of epistemic update itself can be tackled through the tools of machine learning typically reserved for point estimates, through the addition of this epistemic index. Further, since these machine learning tools were explicitly designed to scale to large and complex problems, they might provide tractable approximations to large scale Bayesian inference even where the exact computations are intractable.

For a more comprehensive overview, see the accompanying paper.

Reproducing NeurIPS experiments

To reproduce the experiments from our paper please see experiments/neurips_2021.

Getting started

You can get started in our colab tutorial without installing anything on your machine.

Installation

We have tested ENN on Python 3.7. To install the dependencies:

  1. Optional: We recommend using a Python virtual environment to manage your dependencies, so as not to clobber your system installation:

    python3 -m venv enn
    source enn/bin/activate
    pip install --upgrade pip setuptools
  2. Install ENN directly from github:

    pip install git+https://github.com/deepmind/enn
  3. Test that you can load ENN by training a simple ensemble ENN.

    from acme.utils.loggers.terminal import TerminalLogger
    
    from enn import losses
    from enn import networks
    from enn import supervised
    from enn.supervised import regression_data
    import optax
    
    # A small dummy dataset
    dataset = regression_data.make_dataset()
    
    # Logger
    logger = TerminalLogger('supervised_regression')
    
    # ENN
    enn = networks.MLPEnsembleMatchedPrior(
        output_sizes=[50, 50, 1],
        num_ensemble=10,
    )
    
    # Loss
    loss_fn = losses.average_single_index_loss(
        single_loss=losses.L2LossWithBootstrap(),
        num_index_samples=10
    )
    
    # Optimizer
    optimizer = optax.adam(1e-3)
    
    # Train the experiment
    experiment = supervised.Experiment(
        enn, loss_fn, optimizer, dataset, seed=0, logger=logger)
    experiment.train(FLAGS.num_batch)

More examples can be found in the colab tutorial.

  1. Optional: run the tests by executing ./test.sh from ENN root directory.

Citing

If you use ENN in your work, please cite the accompanying paper:

@inproceedings{,
    title={Epistemic Neural Networks},
    author={Ian Osband, Zheng Wen, Mohammad Asghari, Morteza Ibrahimi, Xiyuan Lu, Benjamin Van Roy},
    booktitle={arxiv},
    year={2021},
    url={https://arxiv.org/abs/2107.08924}
}
Owner
DeepMind
DeepMind
Automatic self-diagnosis program (python required)Automatic self-diagnosis program (python required)

auto-self-checker 자동으로 자가진단 해주는 프로그램(python 필요) 중요 이 프로그램이 실행될때에는 절대로 마우스포인터를 움직이거나 키보드를 건드리면 안된다(화면인식, 마우스포인터로 직접 클릭) 사용법 프로그램을 구동할 폴더 내의 cmd창에서 pip

1 Dec 30, 2021
ncnn is a high-performance neural network inference framework optimized for the mobile platform

ncnn ncnn is a high-performance neural network inference computing framework optimized for mobile platforms. ncnn is deeply considerate about deployme

Tencent 16.2k Jan 05, 2023
LLVIP: A Visible-infrared Paired Dataset for Low-light Vision

LLVIP: A Visible-infrared Paired Dataset for Low-light Vision Project | Arxiv | Abstract It is very challenging for various visual tasks such as image

CVSM Group - email: <a href=[email protected]"> 377 Jan 07, 2023
End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021)

PDVC Official implementation for End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021) [paper] [valse论文速递(Chinese)] This repo supports:

Teng Wang 118 Dec 16, 2022
Paper: De-rendering Stylized Texts

Paper: De-rendering Stylized Texts Wataru Shimoda1, Daichi Haraguchi2, Seiichi Uchida2, Kota Yamaguchi1 1CyberAgent.Inc, 2 Kyushu University Accepted

CyberAgent AI Lab 55 Dec 18, 2022
[ICML 2022] The official implementation of Graph Stochastic Attention (GSAT).

Graph Stochastic Attention (GSAT) The official implementation of GSAT for our paper: Interpretable and Generalizable Graph Learning via Stochastic Att

85 Nov 27, 2022
Official PyTorch code for the paper: "Point-Based Modeling of Human Clothing" (ICCV 2021)

Point-Based Modeling of Human Clothing Paper | Project page | Video This is an official PyTorch code repository of the paper "Point-Based Modeling of

Visual Understanding Lab @ Samsung AI Center Moscow 64 Nov 22, 2022
Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Features"

EDM-subgenre-classifier This repository contains the code for "Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Fea

11 Dec 20, 2022
DANet for Tabular data classification/ regression.

Deep Abstract Networks A PyTorch code implemented for the submission DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Do

Ronnie Rocket 55 Sep 14, 2022
DETReg: Unsupervised Pretraining with Region Priors for Object Detection

DETReg: Unsupervised Pretraining with Region Priors for Object Detection Amir Bar, Xin Wang, Vadim Kantorov, Colorado J Reed, Roei Herzig, Gal Chechik

Amir Bar 283 Dec 27, 2022
TensorFlow implementation of Elastic Weight Consolidation

Elastic weight consolidation Introduction A TensorFlow implementation of elastic weight consolidation as presented in Overcoming catastrophic forgetti

James Stokes 67 Oct 11, 2022
Paper Title: Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution

HKDnet Paper Title: "Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution" Email:

wasteland 11 Nov 12, 2022
Revealing and Protecting Labels in Distributed Training

Revealing and Protecting Labels in Distributed Training

Google Interns 0 Nov 09, 2022
Accelerated deep learning R&D

Accelerated deep learning R&D PyTorch framework for Deep Learning research and development. It focuses on reproducibility, rapid experimentation, and

Catalyst-Team 3.1k Jan 06, 2023
Unsupervised Learning of Multi-Frame Optical Flow with Occlusions

This is a Pytorch implementation of Janai, J., Güney, F., Ranjan, A., Black, M. and Geiger, A., Unsupervised Learning of Multi-Frame Optical Flow with

Anurag Ranjan 110 Nov 02, 2022
PyTorch implementation of the ideas presented in the paper Interaction Grounded Learning (IGL)

Interaction Grounded Learning This repository contains a simple PyTorch implementation of the ideas presented in the paper Interaction Grounded Learni

Arthur Juliani 4 Aug 31, 2022
Predicting 10 different clothing types using Xception pre-trained model.

Predicting-Clothing-Types Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from

AbdAssalam Ahmad 3 Dec 29, 2021
Simple, efficient and flexible vision toolbox for mxnet framework.

MXbox: Simple, efficient and flexible vision toolbox for mxnet framework. MXbox is a toolbox aiming to provide a general and simple interface for visi

Ligeng Zhu 31 Oct 19, 2019
Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences", CVPR 2021.

HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature fo

Google Interns 50 Dec 21, 2022
Code for ICCV2021 paper PARE: Part Attention Regressor for 3D Human Body Estimation

PARE: Part Attention Regressor for 3D Human Body Estimation [ICCV 2021] PARE: Part Attention Regressor for 3D Human Body Estimation, Muhammed Kocabas,

Muhammed Kocabas 277 Jan 03, 2023