Minimalist Python-based implementations of algorithms for imbalanced learning. Includes deep and representational learning algorithms (implemented via TensorFlow). Below is a list of the methods currently implemented.
Undersampling
Random Majority Undersampling with/without Replacement
: N. V. Chawla, K. W. Bowyer, L. O. Hall, and P. Kegelmeyer. "SMOTE: Synthetic Minority Over-Sampling Technique." Journal of Artificial Intelligence Research (JAIR), 2002.
: P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. "Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion". Journal of Machine Learning Research (JMLR), 2010.
: I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. "Generative Adversarial Nets". Advances in Neural Information Processing Systems 27 (NIPS), 2014.
: C. Seiffert, T. M. Khoshgoftaar, J. V. Hulse, and A. Napolitano. "RUSBoost: Improving Classification Performance when Training Data is Skewed". International Conference on Pattern Recognition (ICPR), 2008.
: N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer. "SMOTEBoost: Improving Prediction of the Minority Class in Boosting." European Conference on Principles of Data Mining and Knowledge Discovery (PKDD), 2003.
Feature-engine is a Python library with multiple transformers to engineer and select features for use in machine learning models. Feature-engine's transformers follow scikit-learn's functionality wit
AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy m
SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow, in High Performance Computing (HPC) simulations and workloads.
This machine learning model was developed for House Prices - Advanced Regression Techniques competition in Kaggle by using several machine learning models such as Random Forest, XGBoost and LightGBM.