Library for machine learning stacking generalization.

Overview

Build Status

stacked_generalization

Implemented machine learning *stacking technic[1]* as handy library in Python. Feature weighted linear stacking is also available. (See https://github.com/fukatani/stacked_generalization/tree/master/stacked_generalization/example)

Including simple model cache system Joblibed claasifier and Joblibed Regressor.

Feature

1) Any scikit-learn model is availavle for Stage 0 and Stage 1 model.

And stacked model itself has the same interface as scikit-learn library.

You can replace model such as RandomForestClassifier to stacked model easily in your scripts. And multi stage stacking is also easy.

ex.

from stacked_generalization.lib.stacking import StackedClassifier
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.linear_model import LogisticRegression, RidgeClassifier
from sklearn import datasets, metrics
iris = datasets.load_iris()

# Stage 1 model
bclf = LogisticRegression(random_state=1)

# Stage 0 models
clfs = [RandomForestClassifier(n_estimators=40, criterion = 'gini', random_state=1),
        GradientBoostingClassifier(n_estimators=25, random_state=1),
        RidgeClassifier(random_state=1)]

# same interface as scikit-learn
sl = StackedClassifier(bclf, clfs)
sl.fit(iris.target, iris.data)
score = metrics.accuracy_score(iris.target, sl.predict(iris.data))
print("Accuracy: %f" % score)

More detail example is here. https://github.com/fukatani/stacked_generalization/blob/master/stacked_generalization/example/cross_validation_for_iris.py

https://github.com/fukatani/stacked_generalization/blob/master/stacked_generalization/example/simple_regression.py

2) Evaluation model by out-of-bugs score.

Stacking technic itself uses CV to stage0. So if you use CV for entire stacked model, *each stage 0 model are fitted n_folds squared times.* Sometimes its computational cost can be significent, therefore we implemented CV only for stage1[2].

For example, when we get 3 blends (stage0 prediction), 2 blends are used for stage 1 fitting. The remaining one blend is used for model test. Repitation this cycle for all 3 blends, and averaging scores, we can get oob (out-of-bugs) score *with only n_fold times stage0 fitting.*

ex.

sl = StackedClassifier(bclf, clfs, oob_score_flag=True)
sl.fit(iris.data, iris.target)
print("Accuracy: %f" % sl.oob_score_)

3) Caching stage1 blend_data and trained model. (optional)

If cache is exists, recalculation for stage 0 will be skipped. This function is useful for stage 1 tuning.

sl = StackedClassifier(bclf, clfs, save_stage0=True, save_dir='stack_temp')

Feature of Joblibed Classifier / Regressor

Joblibed Classifier / Regressor is simple cache system for scikit-learn machine learning model. You can use it easily by minimum code modification.

At first fitting and prediction, model calculation is performed normally. At the same time, model fitting result and prediction result are saved as .pkl and .csv respectively.

At second fitting and prediction, if cache is existence, model and prediction results will be loaded from cache and never recalculation.

e.g.

from sklearn import datasets
from sklearn.cross_validation import StratifiedKFold
from sklearn.ensemble import RandomForestClassifier
from stacked_generalization.lib.joblibed import JoblibedClassifier

# Load iris
iris = datasets.load_iris()

# Declaration of Joblibed model
rf = RandomForestClassifier(n_estimators=40)
clf = JoblibedClassifier(rf, "rf")

train_idx, test_idx = list(StratifiedKFold(iris.target, 3))[0]

xs_train = iris.data[train_idx]
y_train = iris.target[train_idx]
xs_test = iris.data[test_idx]
y_test = iris.target[test_idx]

# Need to indicate sample for discriminating cache existence.
clf.fit(xs_train, y_train, train_idx)
score = clf.score(xs_test, y_test, test_idx)

See also https://github.com/fukatani/stacked_generalization/blob/master/stacked_generalization/lib/joblibed.py

Software Requirement

  • Python (2.7 or 3.5 or later)
  • numpy
  • scikit-learn
  • pandas

Installation

pip install stacked_generalization

License

MIT License. (http://opensource.org/licenses/mit-license.php)

Copyright

Copyright (C) 2016, Ryosuke Fukatani

Many part of the implementation of stacking is based on the following. Thanks! https://github.com/log0/vertebral/blob/master/stacked_generalization.py

Other

Any contributions (implement, documentation, test or idea...) are welcome.

References

[1] L. Breiman, "Stacked Regressions", Machine Learning, 24, 49-64 (1996). [2] J. Sill1 et al, "Feature Weighted Linear Stacking", https://arxiv.org/abs/0911.0460, 2009.

Summer: compartmental disease modelling in Python

Summer: compartmental disease modelling in Python Summer is a Python-based framework for the creation and execution of compartmental (or "state-based"

6 May 13, 2022
A collection of interactive machine-learning experiments: 🏋️models training + 🎨models demo

🤖 Interactive Machine Learning experiments: 🏋️models training + 🎨models demo

Oleksii Trekhleb 1.4k Jan 06, 2023
Interactive Parallel Computing in Python

Interactive Parallel Computing with IPython ipyparallel is the new home of IPython.parallel. ipyparallel is a Python package and collection of CLI scr

IPython 2.3k Dec 30, 2022
MICOM is a Python package for metabolic modeling of microbial communities

Welcome MICOM is a Python package for metabolic modeling of microbial communities currently developed in the Gibbons Lab at the Institute for Systems

57 Dec 21, 2022
The unified machine learning framework, enabling framework-agnostic functions, layers and libraries.

The unified machine learning framework, enabling framework-agnostic functions, layers and libraries. Contents Overview In a Nutshell Where Next? Overv

Ivy 8.2k Dec 31, 2022
Dive into Machine Learning

Dive into Machine Learning Hi there! You might find this guide helpful if: You know Python or you're learning it 🐍 You're new to Machine Learning You

Michael Floering 11.1k Jan 03, 2023
A visual dataflow programming language for sklearn

Persimmon What is it? Persimmon is a visual dataflow language for creating sklearn pipelines. It represents functions as blocks, inputs and outputs ar

Álvaro Bermejo 194 Jan 04, 2023
Bottleneck a collection of fast, NaN-aware NumPy array functions written in C.

Bottleneck Bottleneck is a collection of fast, NaN-aware NumPy array functions written in C. As one example, to check if a np.array has any NaNs using

Python for Data 835 Dec 27, 2022
dirty_cat is a Python module for machine-learning on dirty categorical variables.

dirty_cat dirty_cat is a Python module for machine-learning on dirty categorical variables.

637 Dec 29, 2022
Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn.

Repository Status for Scikit-learn Live webpage Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn. Running local

Thomas J. Fan 6 Dec 27, 2022
30 Days Of Machine Learning Using Pytorch

Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

Mayur 119 Nov 24, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022
Confidence intervals for scikit-learn forest algorithms

forest-confidence-interval: Confidence intervals for Forest algorithms Forest algorithms are powerful ensemble methods for classification and regressi

272 Dec 01, 2022
Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)

Little Ball of Fur is a graph sampling extension library for Python. Please look at the Documentation, relevant Paper, Promo video and External Resour

Benedek Rozemberczki 619 Dec 14, 2022
Repository for DCA0305, an undergraduate course about Machine Learning Workflows and Pipelines

Federal University of Rio Grande do Norte Technology Center Department of Computer Engineering and Automation Machine Learning Based Systems Design Re

Ivanovitch Silva 81 Oct 18, 2022
Book Recommender System Using Sci-kit learn N-neighbours

Model-Based-Recommender-Engine I created a book Recommender System using Sci-kit learn's N-neighbours algorithm for my model and the streamlit library

1 Jan 13, 2022
A linear equation solver using gaussian elimination. Implemented for fun and learning/teaching.

A linear equation solver using gaussian elimination. Implemented for fun and learning/teaching. The solver will solve equations of the type: A can be

Sanjeet N. Dasharath 3 Feb 15, 2022
Practical Time-Series Analysis, published by Packt

Practical Time-Series Analysis This is the code repository for Practical Time-Series Analysis, published by Packt. It contains all the supporting proj

Packt 325 Dec 23, 2022
Evaluate on three different ML model for feature selection using Breast cancer data.

Anomaly-detection-Feature-Selection Evaluate on three different ML model for feature selection using Breast cancer data. ML models: SVM, KNN and MLP.

Tarek idrees 1 Mar 17, 2022