Library for machine learning stacking generalization.

Overview

Build Status

stacked_generalization

Implemented machine learning *stacking technic[1]* as handy library in Python. Feature weighted linear stacking is also available. (See https://github.com/fukatani/stacked_generalization/tree/master/stacked_generalization/example)

Including simple model cache system Joblibed claasifier and Joblibed Regressor.

Feature

1) Any scikit-learn model is availavle for Stage 0 and Stage 1 model.

And stacked model itself has the same interface as scikit-learn library.

You can replace model such as RandomForestClassifier to stacked model easily in your scripts. And multi stage stacking is also easy.

ex.

from stacked_generalization.lib.stacking import StackedClassifier
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.linear_model import LogisticRegression, RidgeClassifier
from sklearn import datasets, metrics
iris = datasets.load_iris()

# Stage 1 model
bclf = LogisticRegression(random_state=1)

# Stage 0 models
clfs = [RandomForestClassifier(n_estimators=40, criterion = 'gini', random_state=1),
        GradientBoostingClassifier(n_estimators=25, random_state=1),
        RidgeClassifier(random_state=1)]

# same interface as scikit-learn
sl = StackedClassifier(bclf, clfs)
sl.fit(iris.target, iris.data)
score = metrics.accuracy_score(iris.target, sl.predict(iris.data))
print("Accuracy: %f" % score)

More detail example is here. https://github.com/fukatani/stacked_generalization/blob/master/stacked_generalization/example/cross_validation_for_iris.py

https://github.com/fukatani/stacked_generalization/blob/master/stacked_generalization/example/simple_regression.py

2) Evaluation model by out-of-bugs score.

Stacking technic itself uses CV to stage0. So if you use CV for entire stacked model, *each stage 0 model are fitted n_folds squared times.* Sometimes its computational cost can be significent, therefore we implemented CV only for stage1[2].

For example, when we get 3 blends (stage0 prediction), 2 blends are used for stage 1 fitting. The remaining one blend is used for model test. Repitation this cycle for all 3 blends, and averaging scores, we can get oob (out-of-bugs) score *with only n_fold times stage0 fitting.*

ex.

sl = StackedClassifier(bclf, clfs, oob_score_flag=True)
sl.fit(iris.data, iris.target)
print("Accuracy: %f" % sl.oob_score_)

3) Caching stage1 blend_data and trained model. (optional)

If cache is exists, recalculation for stage 0 will be skipped. This function is useful for stage 1 tuning.

sl = StackedClassifier(bclf, clfs, save_stage0=True, save_dir='stack_temp')

Feature of Joblibed Classifier / Regressor

Joblibed Classifier / Regressor is simple cache system for scikit-learn machine learning model. You can use it easily by minimum code modification.

At first fitting and prediction, model calculation is performed normally. At the same time, model fitting result and prediction result are saved as .pkl and .csv respectively.

At second fitting and prediction, if cache is existence, model and prediction results will be loaded from cache and never recalculation.

e.g.

from sklearn import datasets
from sklearn.cross_validation import StratifiedKFold
from sklearn.ensemble import RandomForestClassifier
from stacked_generalization.lib.joblibed import JoblibedClassifier

# Load iris
iris = datasets.load_iris()

# Declaration of Joblibed model
rf = RandomForestClassifier(n_estimators=40)
clf = JoblibedClassifier(rf, "rf")

train_idx, test_idx = list(StratifiedKFold(iris.target, 3))[0]

xs_train = iris.data[train_idx]
y_train = iris.target[train_idx]
xs_test = iris.data[test_idx]
y_test = iris.target[test_idx]

# Need to indicate sample for discriminating cache existence.
clf.fit(xs_train, y_train, train_idx)
score = clf.score(xs_test, y_test, test_idx)

See also https://github.com/fukatani/stacked_generalization/blob/master/stacked_generalization/lib/joblibed.py

Software Requirement

  • Python (2.7 or 3.5 or later)
  • numpy
  • scikit-learn
  • pandas

Installation

pip install stacked_generalization

License

MIT License. (http://opensource.org/licenses/mit-license.php)

Copyright

Copyright (C) 2016, Ryosuke Fukatani

Many part of the implementation of stacking is based on the following. Thanks! https://github.com/log0/vertebral/blob/master/stacked_generalization.py

Other

Any contributions (implement, documentation, test or idea...) are welcome.

References

[1] L. Breiman, "Stacked Regressions", Machine Learning, 24, 49-64 (1996). [2] J. Sill1 et al, "Feature Weighted Linear Stacking", https://arxiv.org/abs/0911.0460, 2009.

CD) in machine learning projectsImplementing continuous integration & delivery (CI/CD) in machine learning projects

CML with cloud compute This repository contains a sample project using CML with Terraform (via the cml-runner function) to launch an AWS EC2 instance

Iterative 19 Oct 03, 2022
Automatic extraction of relevant features from time series:

tsfresh This repository contains the TSFRESH python package. The abbreviation stands for "Time Series Feature extraction based on scalable hypothesis

Blue Yonder GmbH 7k Jan 06, 2023
Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber

Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber

EconML/CausalML KDD 2021 Tutorial 124 Dec 28, 2022
This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev

MLProject_01 This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev Context Dataset English question data set file F

Hadi Nakhi 1 Dec 18, 2021
Sleep stages are classified with the help of ML. We have used 4 different ML algorithms (SVM, KNN, RF, NN) to demonstrate them

Sleep stages are classified with the help of ML. We have used 4 different ML algorithms (SVM, KNN, RF, NN) to demonstrate them.

Anirudh Edpuganti 3 Apr 03, 2022
Iris species predictor app is used to classify iris species created using python's scikit-learn, fastapi, numpy and joblib packages.

Iris Species Predictor Iris species predictor app is used to classify iris species using their sepal length, sepal width, petal length and petal width

Siva Prakash 5 Apr 05, 2022
A repository for collating all the resources such as articles, blogs, papers, and books related to Bayesian Statistics.

A repository for collating all the resources such as articles, blogs, papers, and books related to Bayesian Statistics.

Aayush Malik 80 Dec 12, 2022
ETNA – time series forecasting framework

ETNA Time Series Library Predict your time series the easiest way Homepage | Documentation | Tutorials | Contribution Guide | Release Notes ETNA is an

Tinkoff.AI 675 Jan 08, 2023
Mars is a tensor-based unified framework for large-scale data computation which scales numpy, pandas, scikit-learn and Python functions.

Mars is a tensor-based unified framework for large-scale data computation which scales numpy, pandas, scikit-learn and many other libraries. Documenta

2.5k Jan 07, 2023
Case studies with Bayesian methods

Case studies with Bayesian methods

Baze Petrushev 8 Nov 26, 2022
An AutoML survey focusing on practical systems.

This project is a community effort in constructing and maintaining an up-to-date beginner-friendly introduction to AutoML, focusing on practical systems. AutoML is a big field, and continues to grow

AutoGOAL 16 Aug 14, 2022
My capstone project for Udacity's Machine Learning Nanodegree

MLND-Capstone My capstone project for Udacity's Machine Learning Nanodegree Lane Detection with Deep Learning In this project, I use a deep learning-b

Michael Virgo 407 Dec 12, 2022
Scikit-Learn useful pre-defined Pipelines Hub

Scikit-Pipes Scikit-Learn useful pre-defined Pipelines Hub Usage: Install scikit-pipes It's advised to install sklearn-genetic using a virtual env, in

Rodrigo Arenas 1 Apr 26, 2022
Nevergrad - A gradient-free optimization platform

Nevergrad - A gradient-free optimization platform nevergrad is a Python 3.6+ library. It can be installed with: pip install nevergrad More installati

Meta Research 3.4k Jan 08, 2023
XManager: A framework for managing machine learning experiments 🧑‍🔬

XManager is a platform for packaging, running and keeping track of machine learning experiments. It currently enables one to launch experiments locally or on Google Cloud Platform (GCP). Interaction

DeepMind 620 Dec 27, 2022
Probabilistic programming framework that facilitates objective model selection for time-varying parameter models.

Time series analysis today is an important cornerstone of quantitative science in many disciplines, including natural and life sciences as well as eco

Christoph Mark 129 Dec 24, 2022
🔬 A curated list of awesome machine learning strategies & tools in financial market.

🔬 A curated list of awesome machine learning strategies & tools in financial market.

GeorgeZou 1.6k Dec 30, 2022
LibRerank is a toolkit for re-ranking algorithms. There are a number of re-ranking algorithms, such as PRM, DLCM, GSF, miDNN, SetRank, EGRerank, Seq2Slate.

LibRerank LibRerank is a toolkit for re-ranking algorithms. There are a number of re-ranking algorithms, such as PRM, DLCM, GSF, miDNN, SetRank, EGRer

126 Dec 28, 2022
Gaussian Process Optimization using GPy

End of maintenance for GPyOpt Dear GPyOpt community! We would like to acknowledge the obvious. The core team of GPyOpt has moved on, and over the past

Sheffield Machine Learning Software 847 Dec 19, 2022
Houseprices - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

1 Jan 01, 2022