โš–๏ธ๐Ÿ”๐Ÿ”ฎ๐Ÿ•ต๏ธโ€โ™‚๏ธ๐Ÿฆน๐Ÿ–ผ๏ธ Code for *Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances* paper.

Overview

Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances

This repository contains the code for Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances.

Reported running times are approximate, intended to give a general idea of how long each step will take. Estimates are based on times encountered while developing on Ubuntu 21.04 with hardware that includes an AMD Ryzen 9 3950X CPU, 64GB of memory, and an NVIDIA TITAN RTX GPU with 24GB of memory. The intermediate results utilize about 600 gigabytes of storage.

Requirements

The code was developed using Python 3.9 on Ubuntu 21.04. Other systems and Python versions may work, but have not been tested.

Python library dependencies are specified in requirements.txt. Versions are pinned for reproducibility.

Installation

  • Optionally create and activate a virtual environment.
python3 -m venv env
source env/bin/activate
  • Install Python dependencies, specified in requirements.txt.
    • 2 minutes
pip3 install -r requirements.txt

Running the Code

By default, output is saved to the ./workspace directory, which is created automatically.

  • Train ResNet classification models.
    • 6 weeks
python3 src/train_nets.py
  • Evaluate the models, extracting representations from the corresponding data.
    • 1 hour
python3 src/eval_nets.py
  • Adversarially perturb test images, evaluating and extracting representations from the corresponding data.
    • 21 hours
python3 src/attack.py
  • Train and evaluate model-wise control adversarial instance detectors, varying the number of underlying models used for generating features, where the underlying detectors are trained on representations from a single model.
    • 1 day
OMP_NUM_THREADS=1 python3 src/detect_model_wise_control.py
  • Train and evaluate model-wise treatment adversarial instance detectors, varying the number of underlying models used for generating features, where the underlying detectors are trained on representations from multiple models.
    • 1 day
OMP_NUM_THREADS=1 python3 src/detect_model_wise_treatment.py
  • Train and evaluate unit-wise control adversarial instance detectors, varying the number of units used for generating features, where the units come from a single underlying model.
    • 1 hour
OMP_NUM_THREADS=1 python3 src/detect_unit_wise_control.py
  • Train and evaluate unit-wise treatment adversarial instance detectors, varying the number of units used for generating features, where the units come from multiple underlying models.
    • 2 hours
OMP_NUM_THREADS=1 python3 src/detect_unit_wise_treatment.py
  • Generate plots.
    • 2 seconds
python3 src/plot.py

Citation

@misc{steinberg2021measuring,
      title={Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances}, 
      author={Daniel Steinberg and Paul Munro},
      year={2021},
      eprint={2111.07035},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
REGTR: End-to-end Point Cloud Correspondences with Transformers

REGTR: End-to-end Point Cloud Correspondences with Transformers This repository contains the source code for REGTR. REGTR utilizes multiple transforme

Zi Jian Yew 108 Dec 17, 2022
Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)

Few-shot Image Generation via Cross-domain Correspondence Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, Richard Zh

Utkarsh Ojha 251 Dec 11, 2022
Implementation of Restricted Boltzmann Machine (RBM) and its variants in Tensorflow

xRBM Library Implementation of Restricted Boltzmann Machine (RBM) and its variants in Tensorflow Installation Using pip: pip install xrbm Examples Tut

Omid Alemi 55 Dec 29, 2022
The project is an official implementation of our paper "3D Human Pose Estimation with Spatial and Temporal Transformers".

3D Human Pose Estimation with Spatial and Temporal Transformers This repo is the official implementation for 3D Human Pose Estimation with Spatial and

Ce Zheng 363 Dec 28, 2022
The challenge for Quantum Coalition Hackathon 2021

Qchack 2021 Google Challenge This is a challenge for the brave 2021 qchack.io participants. Instructions Hello, intrepid qchacker, welcome to the G|o

quantumlib 18 May 04, 2022
PantheonRL is a package for training and testing multi-agent reinforcement learning environments.

PantheonRL is a package for training and testing multi-agent reinforcement learning environments. PantheonRL supports cross-play, fine-tuning, ad-hoc coordination, and more.

Stanford Intelligent and Interactive Autonomous Systems Group 57 Dec 28, 2022
Robocop is your personal mini voice assistant made using Python.

Robocop-VoiceAssistant To use this project, you should have python installed in your system. If you don't have python installed, install it beforehand

Sohil Khanduja 3 Feb 26, 2022
Towards End-to-end Video-based Eye Tracking

Towards End-to-end Video-based Eye Tracking The code accompanying our ECCV 2020 publication and dataset, EVE. Authors: Seonwook Park, Emre Aksan, Xuco

Seonwook Park 76 Dec 12, 2022
Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps[AAAI2021]

Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps Here is the code for ssbassline model. We also provide OCR results/features/mode

ZephyrZhuQi 51 Nov 18, 2022
[NeurIPS 2020] Official repository for the project "Listening to Sound of Silence for Speech Denoising"

Listening to Sounds of Silence for Speech Denoising Introduction This is the repository of the "Listening to Sounds of Silence for Speech Denoising" p

Henry Xu 40 Dec 20, 2022
ViViT: Curvature access through the generalized Gauss-Newton's low-rank structure

ViViT is a collection of numerical tricks to efficiently access curvature from the generalized Gauss-Newton (GGN) matrix based on its low-rank structure. Provided functionality includes computing

Felix Dangel 12 Dec 08, 2022
ColossalAI-Benchmark - Performance benchmarking with ColossalAI

Benchmark for Tuning Accuracy and Efficiency Overview The benchmark includes our

HPC-AI Tech 31 Oct 07, 2022
Zero-Cost Proxies for Lightweight NAS

Zero-Cost-NAS Companion code for the ICLR2021 paper: Zero-Cost Proxies for Lightweight NAS tl;dr A single minibatch of data is used to score neural ne

SamsungLabs 108 Dec 20, 2022
Code samples for my book "Neural Networks and Deep Learning"

Code samples for "Neural Networks and Deep Learning" This repository contains code samples for my book on "Neural Networks and Deep Learning". The cod

Michael Nielsen 13.9k Dec 26, 2022
Direct Multi-view Multi-person 3D Human Pose Estimation

Implementation of NeurIPS-2021 paper: Direct Multi-view Multi-person 3D Human Pose Estimation [paper] [video-YouTube, video-Bilibili] [slides] This is

Sea AI Lab 251 Dec 30, 2022
This repo implements a 3D segmentation task for an airport baggage dataset.

3D CT Scan Segmentation With Occupancy Network This repo implements a 3D superresolution segmentation task for an airport baggage dataset. Our final p

Christoph Reich 2 Mar 28, 2022
(CVPR 2022 Oral) Official implementation for "Surface Representation for Point Clouds"

RepSurf - Surface Representation for Point Clouds [CVPR 2022 Oral] By Haoxi Ran* , Jun Liu, Chengjie Wang ( * : corresponding contact) The pytorch off

Haoxi Ran 264 Dec 23, 2022
Implementation of "Large Steps in Inverse Rendering of Geometry"

Large Steps in Inverse Rendering of Geometry ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia), December 2021. Baptiste Nicolet ยท Alec Jacob

RGL: Realistic Graphics Lab 274 Jan 06, 2023
Face-Recognition-based-Attendance-System - An implementation of Attendance System in python.

Face-Recognition-based-Attendance-System A real time implementation of Attendance System in python. Pre-requisites To understand the implentation of F

Muhammad Zain Ul Haque 1 Dec 31, 2021