Deep Structured Instance Graph for Distilling Object Detectors (ICCV 2021)

Related tags

Deep LearningDsig
Overview

DSIG

Deep Structured Instance Graph for Distilling Object Detectors

Authors: Yixin Chen, Pengguang Chen, Shu Liu, Liwei Wang, Jiaya Jia.

[pdf] [slide] [supp] [bibtex]

This repo provides the implementation of paper "Deep Structured Instance Graph for Distilling Object Detectors"(Dsig) based on detectron2. Specifically, aiming at solving the feature imbalance problem while further excavating the missing relation inside semantic instances, we design a graph whose nodes correspond to instance proposal-level features and edges represent the relation between nodes. We achieve new state-of-the-art results on the COCO object detection task with diverse student-teacher pairs on both one- and two-stage detectors.

Installation

Requirements

  • Python >= 3.6
  • Pytorch >= 1.7.0
  • Torchvision >= 0.8.1
  • Pycocotools 2.0.2

Follow the install instructions in detectron2, note that in this repo we use detectron2 commit version ff638c931d5999f29c22c1d46a3023e67a5ae6a1. Download COCO dataset and export DETECTRON2_DATASETS=$COCOPATH to direct to COCO dataset. We prepare our pre-trained weights for training in Student-Teacher format, please follow the instructions in Pretrained.

Running

We prepare training configs following the detectron2 format. For training a Faster R-CNN R18-FPN student with a Faster R-CNN R50-FPN teacher on 4 GPUs:

./start_train.sh train projects/Distillation/configs/Distillation-FasterRCNN-R18-R50-dsig-1x.yaml

For testing:

./start_train.sh eval projects/Distillation/configs/Distillation-FasterRCNN-R18-R50-dsig-1x.yaml

For debugging:

./start_train.sh debugtrain projects/Distillation/configs/Distillation-FasterRCNN-R18-R50-dsig-1x.yaml

Results and Models

Faster R-CNN:

Experiment(Student-Teacher) Schedule AP Config Model
R18-R50 1x 37.25 config googledrive
R50-R101 1x 40.57 config googledrive
R101-R152 1x 41.65 config googledrive
MNV2-R50 1x 34.44 config googledrive
EB0-R101 1x 37.74 config googledrive

RetinaNet:

Experiment(Student-Teacher) Schedule AP Config Model
R18-R50 1x 34.72 config googledrive
MNV2-R50 1x 32.16 config googledrive
EB0-R101 1x 34.44 config googledrive

More models and results will be released soon.

Citation

@inproceedings{chen2021dsig,
    title={Deep Structured Instance Graph for Distilling Object Detectors},
    author={Yixin Chen, Pengguang Chen, Shu Liu, Liwei Wang, and Jiaya Jia},
    booktitle={IEEE International Conference on Computer Vision (ICCV)},
    year={2021},
}

Contact

Please contact [email protected].

Owner
DV Lab
Deep Vision Lab
DV Lab
HackBMU-5.0-Team-Ctrl-Alt-Elite - HackBMU 5.0 Team Ctrl Alt Elite

HackBMU-5.0-Team-Ctrl-Alt-Elite The search is over. We present to you ‘Health-A-

3 Feb 19, 2022
(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

xxxnell 656 Dec 30, 2022
YOLOv5 Series Multi-backbone, Pruning and quantization Compression Tool Box.

YOLOv5-Compression Update News Requirements 环境安装 pip install -r requirements.txt Evaluation metric Visdrone Model mAP ZhangYuan 719 Jan 02, 2023

Accurate identification of bacteriophages from metagenomic data using Transformer

PhaMer is a python library for identifying bacteriophages from metagenomic data. PhaMer is based on a Transorfer model and rely on protein-based vocab

Kenneth Shang 9 Nov 30, 2022
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification

Understanding Bayesian Classification This repository hosts the code to reproduce the results presented in the paper On Uncertainty, Tempering, and Da

Sanyam Kapoor 18 Nov 17, 2022
An implementation of Deep Graph Infomax (DGI) in PyTorch

DGI Deep Graph Infomax (Veličković et al., ICLR 2019): https://arxiv.org/abs/1809.10341 Overview Here we provide an implementation of Deep Graph Infom

Petar Veličković 491 Jan 03, 2023
Anderson Acceleration for Deep Learning

Anderson Accelerated Deep Learning (AADL) AADL is a Python package that implements the Anderson acceleration to speed-up the training of deep learning

Oak Ridge National Laboratory 7 Nov 24, 2022
A powerful framework for decentralized federated learning with user-defined communication topology

Scatterbrained Decentralized Federated Learning Scatterbrained makes it easy to build federated learning systems. In addition to traditional federated

Johns Hopkins Applied Physics Laboratory 7 Sep 26, 2022
Distinguishing Commercial from Editorial Content in News

Distinguishing Commercial from Editorial Content in News In this repository you can find the following: An anonymized version of the data used for my

Timo Kats 3 Sep 26, 2022
JAX bindings to the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) library

JAX bindings to FINUFFT This package provides a JAX interface to (a subset of) the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) lib

Dan Foreman-Mackey 32 Oct 15, 2022
Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT

CheXbert: Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT CheXbert is an accurate, automated dee

Stanford Machine Learning Group 51 Dec 08, 2022
Research code for Arxiv paper "Camera Motion Agnostic 3D Human Pose Estimation"

GMR(Camera Motion Agnostic 3D Human Pose Estimation) This repo provides the source code of our arXiv paper: Seong Hyun Kim, Sunwon Jeong, Sungbum Park

Seong Hyun Kim 1 Feb 07, 2022
Prototype python implementation of the ome-ngff table spec

Prototype python implementation of the ome-ngff table spec

Kevin Yamauchi 8 Nov 20, 2022
[ECCV 2020] Reimplementation of 3DDFAv2, including face mesh, head pose, landmarks, and more.

Stable Head Pose Estimation and Landmark Regression via 3D Dense Face Reconstruction Reimplementation of (ECCV 2020) Towards Fast, Accurate and Stable

Remilia Scarlet 221 Dec 30, 2022
PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Background Activation Suppression for Weakly Supervised Object Localization PyTorch implementation of ''Background Activation Suppression for Weakly S

35 Jan 06, 2023
This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin

Chaoqi Wang 107 Apr 20, 2022
Qlib is an AI-oriented quantitative investment platform

Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment.

Microsoft 10.1k Dec 30, 2022
Official PyTorch Implementation of "Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs". NeurIPS 2020.

Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs This repository is the implementation of SELAR. Dasol Hwang* , Jinyoung Pa

MLV Lab (Machine Learning and Vision Lab at Korea University) 48 Nov 09, 2022
A Deep Reinforcement Learning Framework for Stock Market Trading

DQN-Trading This is a framework based on deep reinforcement learning for stock market trading. This project is the implementation code for the two pap

61 Jan 01, 2023
Code needed to reproduce the examples found in "The Temporal Robustness of Stochastic Signals"

The Temporal Robustness of Stochastic Signals Code needed to reproduce the examples found in "The Temporal Robustness of Stochastic Signals" Case stud

0 Oct 28, 2021