A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks)

Overview

A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks)

This repository contains a PyTorch implementation for the paper: Deep Pyramidal Residual Networks (CVPR 2017, Dongyoon Han*, Jiwhan Kim*, and Junmo Kim, (equally contributed by the authors*)). The code in this repository is based on the example provided in PyTorch examples and the nice implementation of Densely Connected Convolutional Networks.

Two other implementations with LuaTorch and Caffe are provided:

  1. A LuaTorch implementation for PyramidNets,
  2. A Caffe implementation for PyramidNets.

Usage examples

To train additive PyramidNet-200 (alpha=300 with bottleneck) on ImageNet-1k dataset with 8 GPUs:

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python train.py --data ~/dataset/ILSVRC/Data/CLS-LOC/ --net_type pyramidnet --lr 0.05 --batch_size 128 --depth 200 -j 16 --alpha 300 --print-freq 1 --expname PyramidNet-200 --dataset imagenet --epochs 100

To train additive PyramidNet-110 (alpha=48 without bottleneck) on CIFAR-10 dataset with a single-GPU:

CUDA_VISIBLE_DEVICES=0 python train.py --net_type pyramidnet --alpha 64 --depth 110 --no-bottleneck --batch_size 32 --lr 0.025 --print-freq 1 --expname PyramidNet-110 --dataset cifar10 --epochs 300

To train additive PyramidNet-164 (alpha=48 with bottleneck) on CIFAR-100 dataset with 4 GPUs:

CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --net_type pyramidnet --alpha 48 --depth 164 --batch_size 128 --lr 0.5 --print-freq 1 --expname PyramidNet-164 --dataset cifar100 --epochs 300

Notes

  1. This implementation contains the training (+test) code for add-PyramidNet architecture on ImageNet-1k dataset, CIFAR-10 and CIFAR-100 datasets.
  2. The traditional data augmentation for ImageNet and CIFAR datasets are used by following fb.resnet.torch.
  3. The example codes for ResNet and Pre-ResNet are also included.
  4. For efficient training on ImageNet-1k dataset, Intel MKL and NVIDIA(nccl) are prerequistes. Please check the official PyTorch github for the installation.

Tracking training progress with TensorBoard

Thanks to the implementation, which support the TensorBoard to track training progress efficiently, all the experiments can be tracked with tensorboard_logger.

Tensorboard_logger can be installed with

pip install tensorboard_logger

Paper Preview

Abstract

Deep convolutional neural networks (DCNNs) have shown remarkable performance in image classification tasks in recent years. Generally, deep neural network architectures are stacks consisting of a large number of convolution layers, and they perform downsampling along the spatial dimension via pooling to reduce memory usage. At the same time, the feature map dimension (i.e., the number of channels) is sharply increased at downsampling locations, which is essential to ensure effective performance because it increases the capability of high-level attributes. Moreover, this also applies to residual networks and is very closely related to their performance. In this research, instead of using downsampling to achieve a sharp increase at each residual unit, we gradually increase the feature map dimension at all the units to involve as many locations as possible. This is discussed in depth together with our new insights as it has proven to be an effective design to improve the generalization ability. Furthermore, we propose a novel residual unit capable of further improving the classification accuracy with our new network architecture. Experiments on benchmark CIFAR datasets have shown that our network architecture has a superior generalization ability compared to the original residual networks.

Schematic Illustration

We provide a simple schematic illustration to compare the several network architectures, which have (a) basic residual units, (b) bottleneck, (c) wide residual units, and (d) our pyramidal residual units, and (e) our pyramidal bottleneck residual units, as follows:

image

Experimental Results

  1. The results are readily reproduced, which show the same performances as those reproduced with A LuaTorch implementation for PyramidNets.

  2. Comparison of the state-of-the-art networks by [Top-1 Test Error Rates VS # of Parameters]:

image

  1. Top-1 test error rates (%) on CIFAR datasets are shown in the following table. All the results of PyramidNets are produced with additive PyramidNets, and α denotes alpha (the widening factor). “Output Feat. Dim.” denotes the feature dimension of just before the last softmax classifier.

image

ImageNet-1k Pretrained Models

  • A pretrained model of PyramidNet-101-360 is trained from scratch using the code in this repository (single-crop (224x224) validation error rates are reported):
Network Type Alpha # of Params Top-1 err(%) Top-5 err(%) Model File
ResNet-101 (Caffe model) - 44.7M 23.6 7.1 Original Model
ResNet-101 (Luatorch model) - 44.7M 22.44 6.21 Original Model
PyramidNet-v1-101 360 42.5M 21.98 6.20 Download
  • Note that the above widely-used ResNet-101 (Caffe model) is trained with the images, where the pixel intensities are in [0,255] and are centered by the mean image, our PyramidNet-101 is trained with the images where the pixel values are standardized.
  • The model is originally trained with PyTorch-0.4, and the keys of num_batches_tracked were excluded for convenience (the BatchNorm2d layer in PyTorch (>=0.4) contains the key of num_batches_tracked by track_running_stats).

Updates

  1. Some minor bugs are fixed (2018/02/22).
  2. train.py is updated (including ImagNet-1k training code) (2018/04/06).
  3. resnet.py and PyramidNet.py are updated (2018/04/06).
  4. preresnet.py (Pre-ResNet architecture) is uploaded (2018/04/06).
  5. A pretrained model using PyTorch is uploaded (2018/07/09).

Citation

Please cite our paper if PyramidNets are used:

@article{DPRN,
  title={Deep Pyramidal Residual Networks},
  author={Han, Dongyoon and Kim, Jiwhan and Kim, Junmo},
  journal={IEEE CVPR},
  year={2017}
}

If this implementation is useful, please cite or acknowledge this repository on your work.

Contact

Dongyoon Han ([email protected]), Jiwhan Kim ([email protected]), Junmo Kim ([email protected])

Owner
Greg Dongyoon Han
Greg Dongyoon Han
PyTorch code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised DA

PyTorch Code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised Domain Adaptation Viraj Prabhu, Shivam Khare, Deeks

Viraj Prabhu 46 Dec 24, 2022
Code for testing various M1 Chip benchmarks with TensorFlow.

M1, M1 Pro, M1 Max Machine Learning Speed Test Comparison This repo contains some sample code to benchmark the new M1 MacBooks (M1 Pro and M1 Max) aga

Daniel Bourke 348 Jan 04, 2023
Label Studio is a multi-type data labeling and annotation tool with standardized output format

Website • Docs • Twitter • Join Slack Community What is Label Studio? Label Studio is an open source data labeling tool. It lets you label data types

Heartex 11.7k Jan 09, 2023
Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On

UPMT Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On See main.py as an example: from model import PopM

7 Sep 01, 2022
Conceptual 12M is a dataset containing (image-URL, caption) pairs collected for vision-and-language pre-training.

Conceptual 12M We introduce the Conceptual 12M (CC12M), a dataset with ~12 million image-text pairs meant to be used for vision-and-language pre-train

Google Research Datasets 226 Dec 07, 2022
My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs (GNN, GAT, GraphSAGE, GCN)

machine-learning-with-graphs My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs Course materials can be

Marko Njegomir 7 Dec 14, 2022
NeWT: Natural World Tasks

NeWT: Natural World Tasks This repository contains resources for working with the NeWT dataset. ❗ At this time the binary tasks are not publicly avail

Visipedia 26 Oct 18, 2022
A setup script to generate ITK Python Wheels

ITK Python Package This project provides a setup.py script to build ITK Python binary packages and infrastructure to build ITK external module Python

Insight Software Consortium 59 Dec 14, 2022
DetCo: Unsupervised Contrastive Learning for Object Detection

DetCo: Unsupervised Contrastive Learning for Object Detection arxiv link News Sparse RCNN+DetCo improves from 45.0 AP to 46.5 AP(+1.5) with 3x+ms trai

Enze Xie 234 Dec 18, 2022
Object detection (YOLO) with pytorch, OpenCV and python

Real Time Object/Face Detection Using YOLO-v3 This project implements a real time object and face detection using YOLO algorithm. You only look once,

1 Aug 04, 2022
Capture all information throughout your model's development in a reproducible way and tie results directly to the model code!

Rubicon Purpose Rubicon is a data science tool that captures and stores model training and execution information, like parameters and outcomes, in a r

Capital One 97 Jan 03, 2023
Blind visual quality assessment on 360° Video based on progressive learning

Blind visual quality assessment on omnidirectional or 360 video (ProVQA) Blind VQA for 360° Video via Progressively Learning from Pixels, Frames and V

5 Jan 06, 2023
A list of all papers and resoureces on Semantic Segmentation

Semantic-Segmentation A list of all papers and resoureces on Semantic Segmentation. Dataset importance SemanticSegmentation_DL Some implementation of

Alan Tang 1.1k Dec 12, 2022
Gesture Volume Control v.2

Gesture volume control v.2 In this project I am going to learn how to use Gesture Control to change the volume of a computer. I first look into hand t

Pavel Dat 23 Dec 26, 2022
rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle.

rastrainer rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle. UI TODO Init UI. Add Block. Add l

deepbands 5 Mar 04, 2022
Implementation of SE3-Transformers for Equivariant Self-Attention, in Pytorch.

SE3 Transformer - Pytorch Implementation of SE3-Transformers for Equivariant Self-Attention, in Pytorch. May be needed for replicating Alphafold2 resu

Phil Wang 207 Dec 23, 2022
[CVPR 2021] A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts

Visual-Reasoning-eXplanation [CVPR 2021 A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts] Project Page | Vid

Andy_Ge 54 Dec 21, 2022
Codes and scripts for "Explainable Semantic Space by Grounding Languageto Vision with Cross-Modal Contrastive Learning"

Visually Grounded Bert Language Model This repository is the official implementation of Explainable Semantic Space by Grounding Language to Vision wit

17 Dec 17, 2022
AntroPy: entropy and complexity of (EEG) time-series in Python

AntroPy is a Python 3 package providing several time-efficient algorithms for computing the complexity of time-series. It can be used for example to e

Raphael Vallat 153 Dec 27, 2022
This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation

TransFuse This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation Requirements Pytorch=1.6.0, 1.9.0 (=1.

Rayicer 93 Dec 19, 2022