The implementation of the submitted paper "Deep Multi-Behaviors Graph Network for Voucher Redemption Rate Prediction" in SIGKDD 2021 Applied Data Science Track.

Overview

DMBGN: Deep Multi-Behaviors Graph Networks for Voucher Redemption Rate Prediction

The implementation of the accepted paper "Deep Multi-Behaviors Graph Networks for Voucher Redemption Rate Prediction" in SIGKDD 2021 Applied Data Science Track.

DMBGN utilizes a User-Behavior Voucher Graph (UVG) to extract complex user-voucher-item relationship and the attention mechanism to capture users' long-term voucher redemption preference. Experiments shows that DMBGN achieves 10%-16% relative AUC improvement over Deep Neural Networks (DNN), and 2% to 4% AUC improvement over Deep Interest Network (DIN).

Benchmark Dataset

A randomly desensitized sampled dataset from one of the large-scaled production dataset from from Lazada (Alibaba Group) is included. The dataset contains three dataframes corresponding users' voucher collection logs, related user behavior logs and related item features, a detailed description can be found in ./data/README.md file.

We hope this dataset could help to facilitate research in the voucher redemption rate prediction field.

DMBGN Performance

Compared Models:

  • LR: Logistic Regression [1], a shallow model.
  • GBDT: Gradient Boosting Decision Tree [2], a tree-based non deep-learning model.
  • DNN: Deep Neural Networks.
  • WDL: Wide and Deep model [3], a widely accepted model in real industrial applications with an additional linear model besides the deep model compared to DNN.
  • DIN: Deep Interest Network [4], an attention-based model in recommendation systems that has been proven successful in Alibaba.

The experimental results on the public sample dataset are as follows:

Model AUC RelaImpr(DNN) RelaImpr(DIN) Logloss
LR 0.7377 -9.22% -14.28% 0.3897
xgBoost 0.7759 5.40% -0.48% 0.3640
DNN 0.7618 0.00% -5.57% 0.3775
WDL 0.7716 3.73% -2.05% 0.3717
DIN 0.7773 5.90% 0.00% 0.3688
DMBGN_AvgPooling 0.7789 6.54% 0.61% 0.3684
DMBGN_Pretrained 0.7804 7.11% 1.14% 0.3680
DMBGN 0.7885 10.20% 4.06% 0.3616

Note that this dataset is a random sample from dataset Region-C and the performance is different as in the submitted paper due to the smaller sample size (especially xgBoost). However, the conclusion from the experiment results is consistent with the submitted paper, where DMBGN achieves 10.20% relative AUC improvement over DNN and 4.6% uplift over DIN.

image info

How To Use

All experiment codes are organized into the DMBGN_SIGKDD21-release.ipynb jupyter notebook including corresponding running logs, detail code implementation of each model (LR, GBDT, DNN, WDL, DIN, DMBGN) can be found in ./models folder.

To run the experiments, simply start a jupyter notebook and run all code cells in the DMBGN_SIGKDD21-release.ipynb file and check the output logs. Alternatively, you can refer to the existing log outputs in the notebook file. (If you encounter "Sorry, something went wrong. Roload?" error message, just click Reload and the notebook will show.)

To use the DMBGN model, please refer to the code implementation in ./models/DMBGN.py.

Minimum Requirement

python: 3.7.1
numpy: 1.19.5
pandas 1.2.1
pandasql 0.7.3
torch: 1.7.1
torch_geometric: 1.6.3
torch: 1.7.1
torch-cluster: 1.5.8
torch-geometric: 1.6.3
torch-scatter: 2.0.5
torch-sparse: 0.6.8
torch-spline-conv: 1.2.0
torchaudio: 0.7.2
torchvision: 0.8.2
deepctr-torch: 0.2.3
pickle: 4.0

What To Do

  • We are currently deploying DMBGN model online for Lazada voucher related business, the online A/B testing performance will be reported soon.
  • More detailed code comments are being added.

Acknowledgment

Our code implementation is developed based on the Deep Interest Network (DIN) codes from the DeepCTR package, with modification to fit DMBGN model architecture and multi-GPU usage.

We thanks the anonymous reviewers for their time and feedback.

Reference

  • [1] H Brendan McMahan, Gary Holt, David Sculley, Michael Young, Dietmar Ebner,Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, et al.2013. Ad click prediction: a view from the trenches. InProceedings of the 19thACM SIGKDD international conference on Knowledge discovery and data mining.1222–1230.
  • [2] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,Qiwei Ye, and Tie-Yan Liu. 2017. Lightgbm: A highly efficient gradient boostingdecision tree.Advances in neural information processing systems30 (2017), 3146–3154.
  • [3] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, RohanAnil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah.2016. Wide & Deep Learning for Recommender Systems.CoRRabs/1606.07792(2016). arXiv:1606.07792 http://arxiv.org/abs/1606.07792 .
  • [4] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, Xiao Ma, YanghuiYan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep interest network for click-throughrate prediction. InProceedings of the 24th ACM SIGKDD International Conferenceon Knowledge Discovery & Data Mining. 1059–1068.
A library of Recommender Systems

A library of Recommender Systems This repository provides a summary of our research on Recommender Systems. It includes our code base on different rec

MilaGraph 980 Jan 05, 2023
This is our Tensorflow implementation for "Graph-based Embedding Smoothing for Sequential Recommendation" (GES) (TKDE, 2021).

Graph-based Embedding Smoothing (GES) This is our Tensorflow implementation for the paper: Tianyu Zhu, Leilei Sun, and Guoqing Chen. "Graph-based Embe

Tianyu Zhu 15 Nov 29, 2022
Knowledge-aware Coupled Graph Neural Network for Social Recommendation

KCGN AAAI-2021 《Knowledge-aware Coupled Graph Neural Network for Social Recommendation》 Environments python 3.8 pytorch-1.6 DGL 0.5.3 (https://github.

xhc 22 Nov 18, 2022
Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks

SR-HGNN ICDM-2020 《Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks》 Environments python 3.8 pytorch-1.6 DGL 0.5.

xhc 9 Nov 12, 2022
A tensorflow implementation of the RecoGCN model in a CIKM'19 paper, titled with "Relation-Aware Graph Convolutional Networks for Agent-Initiated Social E-Commerce Recommendation".

This repo contains a tensorflow implementation of RecoGCN and the experiment dataset Running the RecoGCN model python train.py Example training outp

xfl15 30 Nov 25, 2022
ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms

ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms, including but not limited to click-through-rate (CTR) prediction, learning-to-ranking (LTR), and Matrix/Tensor Embeddi

LI, Wai Yin 90 Oct 08, 2022
Code for KHGT model, AAAI2021

KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi

32 Nov 29, 2022
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 43 Jan 04, 2023
A PyTorch implementation of "Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information" (WSDM 2021)

FairGNN A PyTorch implementation of "Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information" (

31 Jan 04, 2023
A framework for large scale recommendation algorithms.

A framework for large scale recommendation algorithms.

Alibaba Group - PAI 880 Jan 03, 2023
Recommender System Papers

Included Conferences: SIGIR 2020, SIGKDD 2020, RecSys 2020, CIKM 2020, AAAI 2021, WSDM 2021, WWW 2021

RUCAIBox 704 Jan 06, 2023
Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recommender Systems

DANSER-WWW-19 This repository holds the codes for Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recom

Qitian Wu 78 Dec 10, 2022
Jointly Learning Explainable Rules for Recommendation with Knowledge Graph

Jointly Learning Explainable Rules for Recommendation with Knowledge Graph

57 Nov 03, 2022
[ICDMW 2020] Code and dataset for "DGTN: Dual-channel Graph Transition Network for Session-based Recommendation"

DGTN: Dual-channel Graph Transition Network for Session-based Recommendation This repository contains PyTorch Implementation of ICDMW 2020 (NeuRec @ I

Yujia 25 Nov 17, 2022
Code for ICML2019 Paper "Compositional Invariance Constraints for Graph Embeddings"

Dependencies NOTE: This code has been updated, if you were using this repo earlier and experienced issues that was due to an outaded codebase. Please

Avishek (Joey) Bose 43 Nov 25, 2022
Incorporating User Micro-behaviors and Item Knowledge 59 60 3 into Multi-task Learning for Session-based Recommendation

MKM-SR Incorporating User Micro-behaviors and Item Knowledge into Multi-task Learning for Session-based Recommendation Paper data and code This is the

ciecus 38 Dec 05, 2022
The official implementation of "DGCN: Diversified Recommendation with Graph Convolutional Networks" (WWW '21)

DGCN This is the official implementation of our WWW'21 paper: Yu Zheng, Chen Gao, Liang Chen, Depeng Jin, Yong Li, DGCN: Diversified Recommendation wi

FIB LAB, Tsinghua University 37 Dec 18, 2022
Graph Neural Networks for Recommender Systems

This repository contains code to train and test GNN models for recommendation, mainly using the Deep Graph Library (DGL).

217 Jan 04, 2023
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and newly state-of-the-art recommendation models are implemented.

Yu 1.4k Dec 27, 2022
reXmeX is recommender system evaluation metric library.

A general purpose recommender metrics library for fair evaluation.

AstraZeneca 258 Dec 22, 2022