Official code for "Parser-Free Virtual Try-on via Distilling Appearance Flows", CVPR 2021

Related tags

Text Data & NLPPF-AFN
Overview

Parser-Free Virtual Try-on via Distilling Appearance Flows, CVPR 2021

Official code for CVPR 2021 paper 'Parser-Free Virtual Try-on via Distilling Appearance Flows'

image

[Paper]

[Checkpoints]

Our Test Envirenment

anaconda3

pytorch 1.1.0

torchvision 0.3.0

cuda 9.0

cupy 6.0.0

opencv-python 4.5.1

1 GTX1080 GPU

python 3.6

Installation

conda create -n tryon python=3.6

source activate tryon or conda activate tryon

conda install pytorch=1.1.0 torchvision=0.3.0 cudatoolkit=9.0 -c pytorch

conda install cupy or pip install cupy==6.0.0

pip install opencv-python

git clone https://github.com/geyuying/PF-AFN.git

cd PF-AFN

Run the demo

  1. First, you need to download the checkpoints from google drive and put the folder "PFAFN" under the folder "checkpoints". The folder "checkpoints/PFAFN" shold contain "warp_model_final.pth" and "gen_model_final.pth".
  2. The "dataset" folder contains the demo images for test, where the "test_img" folder contains the person images, the "test_clothes" folder contains the clothes images, and the "test_edge" folder contains edges extracted from the clothes images with the built-in function in python (We saved the extracted edges from the clothes images for convenience). 'demo.txt' records the test pairs.
  3. During test, a person image, a clothes image and its extracted edge are fed into the network to generate the try-on image. No human parsing results or human pose estimation results are needed for test.
  4. To test with the saved model, run test.sh and the results will be saved in the folder "results".
  5. To reproduce our results from the saved model, your test environment should be the same as our test environment, especifically for the version of cupy.

Dataset

  1. VITON contains a training set of 14,221 image pairs and a test set of 2,032 image pairs, each of which has a front-view woman photo and a top clothing image with the resolution 256 x 192. Our saved model is trained on the VITON training set and tested on the VITON test set.
  2. To test our saved model on the complete VITON test set, you can download VITON_test.

License

The use of this code is RESTRICTED to non-commercial research and educational purposes.

Citation

A toolkit for document-level event extraction, containing some SOTA model implementations

Document-level Event Extraction via Heterogeneous Graph-based Interaction Model with a Tracker Source code for ACL-IJCNLP 2021 Long paper: Document-le

84 Dec 15, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

537 Jan 05, 2023
xFormers is a modular and field agnostic library to flexibly generate transformer architectures by interoperable and optimized building blocks.

Description xFormers is a modular and field agnostic library to flexibly generate transformer architectures by interoperable and optimized building bl

Facebook Research 2.3k Jan 08, 2023
A paper list for aspect based sentiment analysis.

Aspect-Based-Sentiment-Analysis A paper list for aspect based sentiment analysis. Survey [IEEE-TAC-20]: Issues and Challenges of Aspect-based Sentimen

jiangqn 419 Dec 20, 2022
keras implement of transformers for humans

keras implement of transformers for humans

苏剑林(Jianlin Su) 4.8k Jan 03, 2023
SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering.

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021
A simple visual front end to the Maya UE4 RBF plugin delivered with MetaHumans

poseWrangler Overview PoseWrangler is a simple UI to create and edit pose-driven relationships in Maya using the MayaUE4RBF plugin. This plugin is dis

Christopher Evans 105 Dec 18, 2022
A natural language modeling framework based on PyTorch

Overview PyText is a deep-learning based NLP modeling framework built on PyTorch. PyText addresses the often-conflicting requirements of enabling rapi

Meta Research 6.4k Jan 08, 2023
A python script to prefab your scripts/text files, and re create them with ease and not have to open your browser to copy code or write code yourself

Scriptfab - What is it? A python script to prefab your scripts/text files, and re create them with ease and not have to open your browser to copy code

DevNugget 3 Jul 28, 2021
This library is testing the ethics of language models by using natural adversarial texts.

prompt2slip This library is testing the ethics of language models by using natural adversarial texts. This tool allows for short and simple code and v

9 Dec 28, 2021
Learn meanings behind words is a key element in NLP. This project concentrates on the disambiguation of preposition senses. Therefore, we train a bert-transformer model and surpass the state-of-the-art.

New State-of-the-Art in Preposition Sense Disambiguation Supervisor: Prof. Dr. Alexander Mehler Alexander Henlein Institutions: Goethe University TTLa

Dirk Neuhäuser 4 Apr 06, 2022
text to speech toolkit. 好用的中文语音合成工具箱,包含语音编码器、语音合成器、声码器和可视化模块。

ttskit Text To Speech Toolkit: 语音合成工具箱。 安装 pip install -U ttskit 注意 可能需另外安装的依赖包:torch,版本要求torch=1.6.0,=1.7.1,根据自己的实际环境安装合适cuda或cpu版本的torch。 ttskit的

KDD 483 Jan 04, 2023
Synthetic data for the people.

zpy: Synthetic data in Blender. Website • Install • Docs • Examples • CLI • Contribute • Licence Abstract Collecting, labeling, and cleaning data for

Zumo Labs 253 Dec 21, 2022
Header-only C++ HNSW implementation with python bindings

Hnswlib - fast approximate nearest neighbor search Header-only C++ HNSW implementation with python bindings. NEWS: version 0.6 Thanks to (@dyashuni) h

2.3k Jan 05, 2023
Model parallel transformers in JAX and Haiku

Table of contents Mesh Transformer JAX Updates Pretrained Models GPT-J-6B Links Acknowledgments License Model Details Zero-Shot Evaluations Architectu

Ben Wang 4.9k Jan 04, 2023
Open solution to the Toxic Comment Classification Challenge

Starter code: Kaggle Toxic Comment Classification Challenge More competitions 🎇 Check collection of public projects 🎁 , where you can find multiple

minerva.ml 153 Jun 22, 2022
A simple implementation of N-gram language model.

About A simple implementation of N-gram language model. Requirements numpy Data preparation Corpus Training data for the N-gram model, a text file lik

4 Nov 24, 2021
Beyond Paragraphs: NLP for Long Sequences

Beyond Paragraphs: NLP for Long Sequences

AI2 338 Dec 02, 2022
Implementation of Token Shift GPT - An autoregressive model that solely relies on shifting the sequence space for mixing

Token Shift GPT Implementation of Token Shift GPT - An autoregressive model that relies solely on shifting along the sequence dimension and feedforwar

Phil Wang 32 Oct 14, 2022
Python api wrapper for JellyFish Lights

Python api wrapper for JellyFish Lights The hope is to make this a pip installable package Current capabalilities: Connects to a local JellyFish Light

10 Dec 18, 2022