Code for "LASR: Learning Articulated Shape Reconstruction from a Monocular Video". CVPR 2021.

Related tags

Deep Learninglasr
Overview

LASR

Installation

Build with conda

conda env create -f lasr.yml
conda activate lasr
# install softras
cd third_party/softras; python setup.py install; cd -;
# install manifold remeshing
git clone --recursive -j8 git://github.com/hjwdzh/Manifold; cd Manifold; mkdir build; cd build; cmake .. -DCMAKE_BUILD_TYPE=Release;make; cd ../../

For docker installation, please see install.md

Data preparation

Create folders to store data and training logs

mkdir log; mkdir tmp; 
Synthetic data

To render {silhouette, flow, rgb} observations of spot.

python scripts/render_syn.py
Real data (DAVIS)

First, download DAVIS 2017 trainval set and copy JPEGImages/Full-Resolution and Annotations/Full-Resolution folders of DAVIS-camel into the according folders in database.

cp ...davis-path/DAVIS/Annotations/Full-Resolution/camel/ -rf database/DAVIS/Annotations/Full-Resolution/
cp ...davis-path/DAVIS-lasr/DAVIS/JPEGImages/Full-Resolution/camel/ -rf database/DAVIS/JPEGImages/Full-Resolution/

Then download pre-trained VCN optical flow:

pip install gdown
mkdir ./lasr_vcn
gdown https://drive.google.com/uc?id=139S6pplPvMTB-_giI6V2dxpOHGqqAdHn -O ./lasr_vcn/vcn_rob.pth

Run VCN-robust to predict optical flow on DAVIS camel video:

bash preprocess/auto_gen.sh camel
Your own video

You will need to download and install detectron2 to obtain object segmentations as instructed below.

python -m pip install detectron2 -f \
  https://dl.fbaipublicfiles.com/detectron2/wheels/cu110/torch1.7/index.html

First, use any video processing tool (such as ffmpeg) to extract frames into JPEGImages/Full-Resolution/name-of-the-video.

mkdir database/DAVIS/JPEGImages/Full-Resolution/pika-tmp/
ffmpeg -ss 00:00:04 -i database/raw/IMG-7495.MOV -vf fps=10 database/DAVIS/JPEGImages/Full-Resolution/pika-tmp/%05d.jpg

Then, run pointrend to get segmentations:

cd preprocess
python mask.py pika path-to-detectron2-root; cd -

Assuming you have downloaded VCN flow in the previous step, run flow prediction:

bash preprocess/auto_gen.sh pika

Single video optimization

Synthetic spot Next, we want to optimize the shape, texture and camera parameters from image observartions. Optimizing spot takes ~20min on a single Titan Xp GPU.
bash scripts/spot3.sh

To render the optimized shape, texture and camera parameters

bash scripts/extract.sh spot3-1 10 1 26 spot3 no no
python render_vis.py --testdir log/spot3-1/ --seqname spot3 --freeze --outpath tmp/1.gif
DAVIS camel

Optimize on camel observations.

bash scripts/template.sh camel

To render optimized camel

bash scripts/render_result.sh camel
Costumized video (Pika)

Similarly, run the following steps to reconstruct pika

bash scripts/template.sh pika

To render reconstructed shape

bash scripts/render_result.sh pika
Monitor optimization

To monitor optimization, run

tensorboard --logdir log/

Example outputs

Evaluation

Run the following command to evaluate 3D shape accuracy for synthetic spot.

python scripts/eval_mesh.py --testdir log/spot3-1/ --gtdir database/DAVIS/Meshes/Full-Resolution/syn-spot3f/

Run the following command to evaluate keypoint accuracy on BADJA.

python scripts/eval_badja.py --testdir log/camel-5/ --seqname camel

Additional Notes

Other videos in DAVIS/BAJDA

Please refer to data preparation and optimization of the camel example, and modify camel to other sequence names, such as dance-twirl. We provide config files the configs folder.

Synthetic articulated objects

To render and reproduce results on articulated objects (Sec. 4.2), you will need to purchase and download 3D models here. We use blender to export animated meshes and run rendera_all.py:

python scripts/render_syn.py --outdir syn-dog-15 --nframes 15 --alpha 0.5 --model dog

Optimize on rendered observations

bash scripts/dog15.sh

To render optimized dog

bash scripts/render_result.sh dog
Batchsize

The current codebase is tested with batchsize=4. Batchsize can be modified in scripts/template.sh. Note decreasing the batchsize will improive speed but reduce the stability.

Distributed training

The current codebase supports single-node multi-gpu training with pytorch distributed data-parallel. Please modify dev and ngpu in scripts/template.sh to select devices.

Acknowledgement

The code borrows the skeleton of CMR

External repos:

External data:

Citation

To cite our paper,

@inproceedings{yang2021lasr,
  title={LASR: Learning Articulated Shape Reconstruction from a Monocular Video},
  author={Yang, Gengshan 
      and Sun, Deqing
      and Jampani, Varun
      and Vlasic, Daniel
      and Cole, Forrester
      and Chang, Huiwen
      and Ramanan, Deva
      and Freeman, William T
      and Liu, Ce},
  booktitle={CVPR},
  year={2021}
}  
Owner
Google
Google ❤️ Open Source
Google
A colab notebook for training Stylegan2-ada on colab, transfer learning onto your own dataset.

Stylegan2-Ada-Google-Colab-Starter-Notebook A no thrills colab notebook for training Stylegan2-ada on colab. transfer learning onto your own dataset h

Harnick Khera 66 Dec 16, 2022
Official code repository for the EMNLP 2021 paper

Integrating Visuospatial, Linguistic and Commonsense Structure into Story Visualization PyTorch code for the EMNLP 2021 paper "Integrating Visuospatia

Adyasha Maharana 23 Dec 19, 2022
Python-based Informatics Kit for Analysing Chemical Units

INSTALLATION Python-based Informatics Kit for the Analysis of Chemical Units Step 1: Make a conda environment: conda create -n pikachu python=3.9 cond

47 Dec 23, 2022
Easy to use Audio Tagging in PyTorch

Audio Classification, Tagging & Sound Event Detection in PyTorch Progress: Fine-tune on audio classification Fine-tune on audio tagging Fine-tune on s

sithu3 15 Dec 22, 2022
Official implementation for "Symbolic Learning to Optimize: Towards Interpretability and Scalability"

Symbolic Learning to Optimize This is the official implementation for ICLR-2022 paper "Symbolic Learning to Optimize: Towards Interpretability and Sca

VITA 8 Dec 19, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

TUCH This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright License fo

Lea Müller 45 Jan 07, 2023
Neural Network Libraries

Neural Network Libraries Neural Network Libraries is a deep learning framework that is intended to be used for research, development and production. W

Sony 2.6k Dec 30, 2022
GANSketchingJittor - Implementation of Sketch Your Own GAN in Jittor

GANSketching in Jittor Implementation of (Sketch Your Own GAN) in Jittor(计图). Or

Bernard Tan 10 Jul 02, 2022
PyTorch implementation for SDEdit: Image Synthesis and Editing with Stochastic Differential Equations

SDEdit: Image Synthesis and Editing with Stochastic Differential Equations Project | Paper | Colab PyTorch implementation of SDEdit: Image Synthesis a

536 Jan 05, 2023
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Mayur 119 Nov 24, 2022
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut

Meta Research 3.7k Jan 02, 2023
This is a code repository for paper OODformer: Out-Of-Distribution Detection Transformer

OODformer: Out-Of-Distribution Detection Transformer This repo is the official the implementation of the OODformer: Out-Of-Distribution Detection Tran

34 Dec 02, 2022
GrabGpu_py: a scripts for grab gpu when gpu is free

GrabGpu_py a scripts for grab gpu when gpu is free. WaitCondition: gpu_memory

tianyuluan 3 Jun 18, 2022
Joint project of the duo Hacker Ninjas

Project Smoothie Společný projekt dua Hacker Ninjas. První pokus o hříčku po třech týdnech učení se programování. Jakub Kolář e:\

Jakub Kolář 2 Jan 07, 2022
The official repository for our paper "The Neural Data Router: Adaptive Control Flow in Transformers Improves Systematic Generalization".

Codebase for learning control flow in transformers The official repository for our paper "The Neural Data Router: Adaptive Control Flow in Transformer

Csordás Róbert 24 Oct 15, 2022
A collection of loss functions for medical image segmentation

A collection of loss functions for medical image segmentation

Jun 3.1k Jan 03, 2023
AAAI-22 paper: SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning

SimSR Code and dataset for the paper SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning (AAAI-22). Requirements We assum

7 Dec 19, 2022
PyTorch implementation of "VRT: A Video Restoration Transformer"

VRT: A Video Restoration Transformer Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Timofte, Luc Van Gool Computer

Jingyun Liang 837 Jan 09, 2023
Try out deep learning models online on Google Colab

Try out deep learning models online on Google Colab

Erdene-Ochir Tuguldur 1.5k Dec 27, 2022
Official implementation of VaxNeRF (Voxel-Accelearated NeRF).

VaxNeRF Paper | Google Colab This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF). VaxNeRF provides very fast training and slightl

naruya 132 Nov 21, 2022