Fine-grained Post-training for Improving Retrieval-based Dialogue Systems - NAACL 2021

Related tags

Deep LearningBERT_FP
Overview

Fine-grained Post-training for Multi-turn Response Selection

PWC

Implements the model described in the following paper Fine-grained Post-training for Improving Retrieval-based Dialogue Systems in NAACL-2021.

@inproceedings{han-etal-2021-fine,
title = "Fine-grained Post-training for Improving Retrieval-based Dialogue Systems",
author = "Han, Janghoon  and Hong, Taesuk  and Kim, Byoungjae  and Ko, Youngjoong  and Seo, Jungyun",
booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jun, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.naacl-main.122", pages = "1549--1558",
}

This code is reimplemented as a fork of huggingface/transformers.

alt text

Setup and Dependencies

This code is implemented using PyTorch v1.8.0, and provides out of the box support with CUDA 11.2 Anaconda is the recommended to set up this codebase.

# https://pytorch.org
conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge
pip install -r requirements.txt

Preparing Data and Checkpoints

Post-trained and fine-tuned Checkpoints

We provide following post-trained and fine-tuned checkpoints.

Data pkl for Fine-tuning (Response Selection)

We used the following data for post-training and fine-tuning

Original version for each dataset is availble in Ubuntu Corpus V1, Douban Corpus, and E-Commerce Corpus, respectively.

Fine-grained Post-Training

Making Data for post-training and fine-tuning
Data_processing.py

Post-training Examples

(Ubuntu Corpus V1, Douban Corpus, E-commerce Corpus)
python -u FPT/ubuntu_final.py --num_train_epochs 25
python -u FPT/douban_final.py --num_train_epochs 27
python -u FPT/e_commmerce_final.py --num_train_epochs 34

Fine-tuning Examples

(Ubuntu Corpus V1, Douban Corpus, E-commerce Corpus)
Taining
To train the model, set `--is_training`
python -u Fine-Tuning/Response_selection.py --task ubuntu --is_training
python -u Fine-Tuning/Response_selection.py --task douban --is_training
python -u Fine-Tuning/Response_selection.py --task e_commerce --is_training
Testing
python -u Fine-Tuning/Response_selection.py --task ubuntu
python -u Fine-Tuning/Response_selection.py --task douban 
python -u Fine-Tuning/Response_selection.py --task e_commerce

Training Response Selection Models

Model Arguments

Fine-grained post-training
task_name data_dir checkpoint_path
ubuntu ubuntu_data/ubuntu_post_train.pkl FPT/PT_checkpoint/ubuntu/bert.pt
douban douban_data/douban_post_train.pkl FPT/PT_checkpoint/douban/bert.pt
e-commerce e_commerce_data/e_commerce_post_train.pkl FPT/PT_checkpoint/e_commerce/bert.pt
Fine-tuning
task_name data_dir checkpoint_path
ubuntu ubuntu_data/ubuntu_dataset_1M.pkl Fine-Tuning/FT_checkpoint/ubuntu.0.pt
douban douban_data/douban_dataset_1M.pkl Fine-Tuning/FT_checkpoint/douban.0.pt
e-commerce e_commerce_data/e_commerce_dataset_1M.pkl Fine-Tuning/FT_checkpoint/e_commerce.0.pt

Performance

We provide model checkpoints of BERT_FP, which obtained new state-of-the-art, for each dataset.

Ubuntu [email protected] [email protected] [email protected]
[BERT_FP] 0.911 0.962 0.994
Douban MAP MRR [email protected] [email protected] [email protected] [email protected]
[BERT_FP] 0.644 0.680 0.512 0.324 0.542 0.870
E-Commerce [email protected] [email protected] [email protected]
[BERT_FP] 0.870 0.956 0.993
Owner
Janghoon Han
NLP Researcher
Janghoon Han
Re-implement CycleGAN in Tensorlayer

CycleGAN_Tensorlayer Re-implement CycleGAN in TensorLayer Original CycleGAN Improved CycleGAN with resize-convolution Prerequisites: TensorLayer Tenso

89 Aug 15, 2022
Code for Efficient Visual Pretraining with Contrastive Detection

Code for DetCon This repository contains code for the ICCV 2021 paper "Efficient Visual Pretraining with Contrastive Detection" by Olivier J. Hénaff,

DeepMind 56 Nov 13, 2022
Prototypical Networks for Few shot Learning in PyTorch

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 835 Jan 08, 2023
RobustVideoMatting and background composing in one model by using onnxruntime.

RVM_onnx_compose RobustVideoMatting and background composing in one model by using onnxruntime. Usage pip install -r requirements.txt python infer_cam

Quantum Liu 4 Apr 07, 2022
ChatBot-Pytorch - A GPT-2 ChatBot implemented using Pytorch and Huggingface-transformers

ChatBot-Pytorch A GPT-2 ChatBot implemented using Pytorch and Huggingface-transf

ParZival 42 Dec 09, 2022
A hue shift helper for OBS

obs-hue-shift A hue shift helper for OBS This is a repo based on the really nice script Hegemege made. The original script can be found https://gist.g

Alexis Tyler 1 Jan 10, 2022
A list of all named GANs!

The GAN Zoo Every week, new GAN papers are coming out and it's hard to keep track of them all, not to mention the incredibly creative ways in which re

Avinash Hindupur 12.9k Jan 08, 2023
simple demo codes for Learning to Teach with Dynamic Loss Functions

Learning to Teach with Dynamic Loss Functions This repo contains the simple demo for the NeurIPS-18 paper: Learning to Teach with Dynamic Loss Functio

Lijun Wu 15 Dec 30, 2021
A PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-Supervised Learning Framework".

Mugs: A Multi-Granular Self-Supervised Learning Framework This is a PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-

Sea AI Lab 62 Nov 08, 2022
Deploy pytorch classification model using Flask and Streamlit

Deploy pytorch classification model using Flask and Streamlit

Ben Seo 1 Nov 17, 2021
Instance-based label smoothing for improving deep neural networks generalization and calibration

Instance-based Label Smoothing for Neural Networks Pytorch Implementation of the algorithm. This repository includes a new proposed method for instanc

Mohamed Maher 1 Aug 13, 2022
BoxInst: High-Performance Instance Segmentation with Box Annotations

Introduction This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge, the paper is BoxInst: High-Performan

88 Dec 21, 2022
GyroSPD: Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices

GyroSPD Code for the paper "Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices" accepted at NeurIPS 2021. Re

Federico Lopez 12 Dec 12, 2022
Tensorflow implementation of Semi-supervised Sequence Learning (https://arxiv.org/abs/1511.01432)

Transfer Learning for Text Classification with Tensorflow Tensorflow implementation of Semi-supervised Sequence Learning(https://arxiv.org/abs/1511.01

DONGJUN LEE 82 Oct 22, 2022
An open source implementation of CLIP.

OpenCLIP Welcome to an open source implementation of OpenAI's CLIP (Contrastive Language-Image Pre-training). The goal of this repository is to enable

2.7k Dec 31, 2022
MMFlow is an open source optical flow toolbox based on PyTorch

Documentation: https://mmflow.readthedocs.io/ Introduction English | 简体中文 MMFlow is an open source optical flow toolbox based on PyTorch. It is a part

OpenMMLab 688 Jan 06, 2023
Image marine sea litter prediction Shiny

MARLITE Shiny app for floating marine litter detection in aerial images. This directory contains the instructions and software needed to install the S

19 Dec 22, 2022
VGG16 model-based classification project about brain tumor detection.

Brain-Tumor-Classification-with-MRI VGG16 model-based classification project about brain tumor detection. First, you can check what people are doing o

Atakan Erdoğan 2 Mar 21, 2022
Official Pytorch implementation of "Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes", CVPR 2022

Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes / 3DCrowdNet News 💪 3DCrowdNet achieves the state-of-the-art accuracy on 3D

Hongsuk Choi 113 Dec 21, 2022
SimplEx - Explaining Latent Representations with a Corpus of Examples

SimplEx - Explaining Latent Representations with a Corpus of Examples Code Author: Jonathan Crabbé ( Jonathan Crabbé 14 Dec 15, 2022