Official pytorch implementation of paper "Image-to-image Translation via Hierarchical Style Disentanglement".

Overview

License CC BY-NC-SA 4.0

HiSD: Image-to-image Translation via Hierarchical Style Disentanglement

Official pytorch implementation of paper "Image-to-image Translation via Hierarchical Style Disentanglement".

fig

HiSD is the SOTA image-to-image translation method for both Scalability for multiple labels and Controllable Diversity with impressive disentanglement.

The styles to manipolate each tag in our method can be not only generated by random noise but also extracted from images!

Also, the styles can be smoothly interpolated like:

reference

All tranlsations are producted be a unified HiSD model and trained end-to-end.

Easy Use (for Both Jupyter Notebook and Python Script)

Download the pretrained checkpoint in Baidu Drive (Password:ihxf) or Google Drive. Then put it into the root of this repo.

Open "easy_use.ipynb" and you can manipolate the facial attributes by yourself!

If you haven't installed Jupyter, use "easy_use.py".

The script will translate "examples/input_0.jpg" to be with bangs generated by a random noise and glasses extracted from "examples/reference_glasses_0.jpg"

Quick Start

Clone this repo:

git clone https://github.com/imlixinyang/HiSD.git
cd HiSD/

Install the dependencies: (Anaconda is recommended.)

conda create -n HiSD python=3.6.6
conda activate HiSD
conda install -y pytorch=1.0.1 torchvision=0.2.2  cudatoolkit=10.1 -c pytorch
pip install pillow tqdm tensorboardx pyyaml

Download the dataset.

We recommend you to download CelebA-HQ from CelebAMask-HQ. Anyway you shound get the dataset folder like:

celeba_or_celebahq
 - img_dir
   - img0
   - img1
   - ...
 - train_label.txt

Preprocess the dataset.

In our paper, we use fisrt 3000 as test set and remaining 27000 for training. Carefully check the fisrt few (always two) lines in the label file which is not like the others.

python proprecessors/celeba-hq.py --img_path $your_image_path --label_path $your_label_path --target_path datasets --start 3002 --end 30002

Then you will get several ".txt" files in the "datasets/", each of them consists of lines of the absolute path of image and its tag-irrelevant conditions (Age and Gender by default).

Almost all custom datasets can be converted into special cases of HiSD. We provide a script for custom datasets. You need to organize the folder like:

your_training_set
 - Tag0
   - attribute0
     - img0
     - img1
     - ...
   - attribute1
     - ...
 - Tag1
 - ...

For example, the AFHQ (one tag and three attributes, remember to split the training and test set first):

AFHQ_training
  - Category
    - cat
      - img0
      - img1
      - ...
    - dog
      - ...
    - wild
      - ...

You can Run

python proprecessors/custom.py --imgs $your_training_set --target_path datasets/custom.txt

For other datasets, please code the preprocessor by yourself.

Here, we provide some links for you to download other available datasets:

Dataset in Bold means we have tested the generalization of HiSD for this dataset.

Train.

Following "configs/celeba-hq.yaml" to make the config file fit your machine and dataset.

For a single 1080Ti and CelebA-HQ, you can directly run:

python core/train.py --config configs/celeba-hq.yaml --gpus 0

The samples and checkpoints are in the "outputs/" dir. For Celeba-hq dataset, the samples during first 200k iterations will be like: (tag 'Glasses' to attribute 'with')

training

Test.

Modify the 'steps' dict in the first few lines in 'core/test.py' and run:

python core/test.py --config configs/celeba-hq.yaml --checkpoint $your_checkpoint --input_path $your_input_path --output_path results

$your_input_path can be either a image file or a folder of images. Default 'steps' make every image to be with bangs and glasses using random latent-guided styles.

Evaluation metrics.

We use FID for quantitative comparison. For more details, please refer to the paper.

License

Licensed under the CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International)

The code is released for academic research use only. For other use, please contact me at [email protected].

Citation

If our paper helps your research, please cite it in your publications:

@misc{li2021imagetoimage,
      title={Image-to-image Translation via Hierarchical Style Disentanglement}, 
      author={Xinyang Li and Shengchuan Zhang and Jie Hu and Liujuan Cao and Xiaopeng Hong and Xudong Mao and Feiyue Huang and Yongjian Wu and Rongrong Ji},
      year={2021},
      eprint={2103.01456},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

I try my best to make the code easy to understand or further modified because I feel very lucky to start with the clear and readily comprehensible code of MUNIT when I'm a beginner.

If you have any problem, please feel free to contact me at [email protected] or raise an issue.

Related Work

Multi-task head pose estimation in-the-wild

Multi-task head pose estimation in-the-wild We provide C++ code in order to replicate the head-pose experiments in our paper https://ieeexplore.ieee.o

Roberto Valle 26 Oct 06, 2022
Code for "R-GCN: The R Could Stand for Random"

RR-GCN: Random Relational Graph Convolutional Networks PyTorch Geometric code for the paper "R-GCN: The R Could Stand for Random" RR-GCN is an extensi

PreDiCT.IDLab 31 Sep 07, 2022
BanditPAM: Almost Linear-Time k-Medoids Clustering

BanditPAM: Almost Linear-Time k-Medoids Clustering This repo contains a high-performance implementation of BanditPAM from BanditPAM: Almost Linear-Tim

254 Dec 12, 2022
Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training

ColossalAI An integrated large-scale model training system with efficient parallelization techniques. arXiv: Colossal-AI: A Unified Deep Learning Syst

HPC-AI Tech 7.9k Jan 08, 2023
Pytorch Implementations of large number classical backbone CNNs, data enhancement, torch loss, attention, visualization and some common algorithms.

Torch-template-for-deep-learning Pytorch implementations of some **classical backbone CNNs, data enhancement, torch loss, attention, visualization and

Li Shengyan 270 Dec 31, 2022
Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources.

Illumination_Decomposition Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources. This code implements the

QAY 7 Nov 15, 2020
Development kit for MIT Scene Parsing Benchmark

Development Kit for MIT Scene Parsing Benchmark [NEW!] Our PyTorch implementation is released in the following repository: https://github.com/hangzhao

MIT CSAIL Computer Vision 424 Dec 01, 2022
LBK 20 Dec 02, 2022
A library for uncertainty quantification based on PyTorch

Torchuq [logo here] TorchUQ is an extensive library for uncertainty quantification (UQ) based on pytorch. TorchUQ currently supports 10 representation

TorchUQ 96 Dec 12, 2022
CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search

CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search This repository is the official implementation of CAPITAL: Optimal Subgrou

Hengrui Cai 0 Oct 19, 2021
Implementation of neural class expression synthesizers

NCES Implementation of neural class expression synthesizers (NCES) Installation Clone this repository: https://github.com/ConceptLengthLearner/NCES.gi

NeuralConceptSynthesis 0 Jan 06, 2022
Source code for 2021 ICCV paper "In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces"

In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces This is the PyTorch implementation for 2021 ICCV paper "In-the-Wild Single C

27 Dec 06, 2022
Mixed Neural Likelihood Estimation for models of decision-making

Mixed neural likelihood estimation for models of decision-making Mixed neural likelihood estimation (MNLE) enables Bayesian parameter inference for mo

mackelab 9 Dec 22, 2022
GMFlow: Learning Optical Flow via Global Matching

GMFlow GMFlow: Learning Optical Flow via Global Matching Authors: Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, Dacheng Tao We streamline the

Haofei Xu 298 Jan 04, 2023
NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

5 Nov 03, 2022
AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation

AirPose AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation Check the teaser video This repository contains the code of A

Robot Perception Group 41 Dec 05, 2022
This is a work in progress reimplementation of Instant Neural Graphics Primitives

Neural Hash Encoding This is a work in progress reimplementation of Instant Neural Graphics Primitives Currently this can train an implicit representa

Penn 79 Sep 01, 2022
code for Fast Point Cloud Registration with Optimal Transport

robot This is the repository for the paper "Accurate Point Cloud Registration with Robust Optimal Transport". We are in the process of refactoring the

28 Jan 04, 2023
PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.

PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen

Subin An 8 Nov 21, 2022
Playable Video Generation

Playable Video Generation Playable Video Generation Willi Menapace, Stéphane Lathuilière, Sergey Tulyakov, Aliaksandr Siarohin, Elisa Ricci Paper: ArX

Willi Menapace 136 Dec 31, 2022