Official Pytorch Implementation of GraphiT

Related tags

Deep LearningGraphiT
Overview

GraphiT: Encoding Graph Structure in Transformers

This repository implements GraphiT, described in the following paper:

Grégoire Mialon*, Dexiong Chen*, Margot Selosse*, Julien Mairal. GraphiT: Encoding Graph Structure in Transformers.
*Equal contribution

Short Description about GraphiT

Figure from paper

GraphiT is an instance of transformers designed for graph-structured data. It takes as input a graph seen as a set of its node features, and integrates the graph structure via i) relative positional encoding using kernels on graphs and ii) encoding local substructures around each node, e.g, short paths, before adding it to the node features. GraphiT is able to outperform Graph Neural Networks in different graph classification and regression tasks, and offers promising visualization capabilities for domains where interpretability is important, e.g, in chemoinformatics.

Installation

Environment:

numpy=1.18.1
scipy=1.3.2
Cython=0.29.23
scikit-learn=0.22.1
matplotlib=3.4
networkx=2.5
python=3.7
pytorch=1.6
torch-geometric=1.7

The train folds and model weights for visualization are already provided at the correct location. Datasets will be downloaded via Pytorch geometric.

To begin with, run:

cd GraphiT
. s_env

To install GCKN, you also need to run:

make

Training GraphiT on graph classification and regression tasks

All our experimental scripts are in the folder experiments. So to start with, run cd experiments.

Classification

To train GraphiT on NCI1 with diffusion kernel, run:

python run_transformer_cv.py --dataset NCI1 --fold-idx 1 --pos-enc diffusion --beta 1.0

Here --fold-idx can be varied from 1 to 10 to train on a specified training fold. To test a selected model, just add the --test flag.

To include Laplacian positional encoding into input node features, run:

python run_transformer_cv.py --dataset NCI1 --fold-idx 1 --pos-enc diffusion --beta 1.0 --lappe --lap-dim 8

To include GCKN path features into input node features, run:

python run_transformer_gckn_cv.py --dataset NCI1 --fold-idx 1 --pos-enc diffusion --beta 1.0 --gckn-path 5

Regression

To train GraphiT on ZINC, run:

python run_transformer.py --pos-enc diffusion --beta 1.0

To include Laplacian positional encoding into input node features, run:

python run_transformer.py --pos-enc diffusion --beta 1.0 --lappe --lap-dim 8

To include GCKN path features into input node features, run:

python run_transformer_gckn.py --pos-enc diffusion --beta 1.0 --gckn-path 8

Visualizing attention scores

To visualize attention scores for GraphiT trained on Mutagenicity, run:

cd experiments
python visu_attention.py --idx-sample 10

To visualize Nitrothiopheneamide-methylbenzene, choose 10 as sample index. To visualize Aminofluoranthene, choose 2003 as sample index. If you want to test for other samples (i.e, other indexes), make sure that the model correctly predicts mutagenicity (class 0) for this sample.

Citation

To cite GraphiT, please use the following Bibtex snippet:

@misc{mialon2021graphit,
      title={GraphiT: Encoding Graph Structure in Transformers}, 
      author={Gr\'egoire Mialon and Dexiong Chen and Margot Selosse and Julien Mairal},
      year={2021},
      eprint={2106.05667},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
Owner
Inria Thoth
A joint team of Inria and Laboratoire Jean Kuntzmann, we design models capable of representing visual information at scale from minimal supervision.
Inria Thoth
Light-weight network, depth estimation, knowledge distillation, real-time depth estimation, auxiliary data.

light-weight-depth-estimation Boosting Light-Weight Depth Estimation Via Knowledge Distillation, https://arxiv.org/abs/2105.06143 Junjie Hu, Chenyou F

Junjie Hu 13 Dec 10, 2022
Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations

Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations This repo contains official code for the NeurIPS 2021 paper Imi

Jiayao Zhang 2 Oct 18, 2021
Deep learning library featuring a higher-level API for TensorFlow.

TFLearn: Deep learning library featuring a higher-level API for TensorFlow. TFlearn is a modular and transparent deep learning library built on top of

TFLearn 9.6k Jan 02, 2023
magiCARP: Contrastive Authoring+Reviewing Pretraining

magiCARP: Contrastive Authoring+Reviewing Pretraining Welcome to the magiCARP API, the test bed used by EleutherAI for performing text/text bi-encoder

EleutherAI 43 Dec 29, 2022
Official implementation of "Robust channel-wise illumination estimation"

This repository provides the official implementation of "Robust channel-wise illumination estimation." accepted in BMVC (2021).

Firas Laakom 4 Nov 08, 2022
This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).

Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation This is the code relat

39 Sep 23, 2022
Final project code: Implementing MAE with downscaled encoders and datasets, for ESE546 FA21 at University of Pennsylvania

546 Final Project: Masked Autoencoder Haoran Tang, Qirui Wu 1. Training To train the network, please run mae_pretraining.py. Please modify folder path

Haoran Tang 0 Apr 22, 2022
Official implementation of AAAI-21 paper "Label Confusion Learning to Enhance Text Classification Models"

Description: This is the official implementation of our AAAI-21 accepted paper Label Confusion Learning to Enhance Text Classification Models. The str

101 Nov 25, 2022
A Python library for Deep Probabilistic Modeling

Abstract DeeProb-kit is a Python library that implements deep probabilistic models such as various kinds of Sum-Product Networks, Normalizing Flows an

DeeProb-org 46 Dec 26, 2022
PERIN is Permutation-Invariant Semantic Parser developed for MRP 2020

PERIN: Permutation-invariant Semantic Parsing David Samuel & Milan Straka Charles University Faculty of Mathematics and Physics Institute of Formal an

ÚFAL 40 Jan 04, 2023
PURE: End-to-End Relation Extraction

PURE: End-to-End Relation Extraction This repository contains (PyTorch) code and pre-trained models for PURE (the Princeton University Relation Extrac

Princeton Natural Language Processing 657 Jan 09, 2023
A repo with study material, exercises, examples, etc for Devnet SPAUTO

MPLS in the SDN Era -- DevNet SPAUTO Get right to the study material: Checkout the Wiki! A lab topology based on MPLS in the SDN era book used for 30

Hugo Tinoco 67 Nov 16, 2022
This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》

CoraNet This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》 Environment pytor

25 Nov 08, 2022
Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection, AAAI 2021.

Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection This repository is an official implementation of the AAAI 2021 paper Co-mi

MEGVII Research 20 Dec 07, 2022
Bald-to-Hairy Translation Using CycleGAN

GANiry: Bald-to-Hairy Translation Using CycleGAN Official PyTorch implementation of GANiry. GANiry: Bald-to-Hairy Translation Using CycleGAN, Fidan Sa

Fidan Samet 10 Oct 27, 2022
Shared Attention for Multi-label Zero-shot Learning

Shared Attention for Multi-label Zero-shot Learning Overview This repository contains the implementation of Shared Attention for Multi-label Zero-shot

dathuynh 26 Dec 14, 2022
Code for How To Create A Fully Automated AI Based Trading System With Python

AI Based Trading System This code works as a boilerplate for an AI based trading system with yfinance as data source and RobinHood or Alpaca as broker

Rubén 196 Jan 05, 2023
A code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

A Benchmark for Rough Sketch Cleanup This is the code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Va

33 Dec 18, 2022
Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network

ild-cnn This is supplementary material for the manuscript: "Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neur

22 Nov 05, 2022
Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface

pyRiemann pyRiemann is a python package for covariance matrices manipulation and classification through Riemannian geometry. The primary target is cla

447 Jan 05, 2023