Solution to the Weather4cast 2021 challenge

Overview

This code was used for the entry by the team "antfugue" for the Weather4cast 2021 Challenge. Below, you can find the instructions for generating predictions, evaluating pre-trained models and training new models.

Installation

To use the code, you need to:

  1. Clone the repository.
  2. Setup a conda environment. You can find an environment verified to work in the environment.yml file. However, you might have to adapt it to your own CUDA installation.
  3. Fetch the data you want from the competition website. Follow the instructions here. The data should should be in the data directory following the structure specified here.
  4. (Optional) If you want to use the pre-trained models, load them from https://doi.org/10.5281/zenodo.5101213. Place the .h5 files in the models/best directory.

Running the code

Go to the weather4cast directory. There you can either launch the main.py script with instructions provided below, or launch an interactive prompt (e.g. ipython) and then import modules and call functions from them.

Reproducing predictions

Run:

python main.py submit --comp_dir=w4c-core-stage-1 --submission_dir="../submissions/test"

where you can change --comp_dir to indicate which competition you want to create predictions for (these correspond to the directory names in the data directory) and --submission_dir to indicate where you want to save the predictions.

This script automatically loads the best model weights corresponding to the "V4pc" submission that produced the best scores on the leaderboards. To experiment with other weights, see the function combined_model_with_weights in models.py and the call to that in main.py. You can change the combination of models and weights with the argument var_weights in combined_model_with_weights.

Generating the predictions should be possible in a reasonable time also on a CPU.

Evaluate pre-trained model

python main.py train --comp_dir=w4c-core-stage-1 --model=resgru --weights="../models/best/resrnn-temperature.h5" --dataset=CTTH --variable=temperature

This example trains the ResGRU model for the temperature variable, loading the pre-trained weights from the --weights file. You can change the model and the variable using the --model, --weights, --dataset and --variable arguments.

A GPU is recommended for this although in principle it can be done on a CPU.

Train a model

python main.py train --comp_dir="w4c-core-stage-1" --model="resgru" --weights=model.h5 --dataset=CTTH --variable=temperature

The arguments are the same as for evaluate except the --weights parameter indicates instead the weights file that the training process keeps saving in the models directory.

A GPU is basically mandatory. The default batch size is set to 32 used in the study but you may have to reduce it if you don't have a lot of GPU memory.

Hint: It is not recommended to train like this except for demonstration purposes. Instead I recommend you look at how the train function in main.py works and follow that in an interactive prompt. The batch generators batch_gen_train and batch_gen_valid are very slow at first but get faster as they cache data. Once the cache is fully populated they will be much faster. You can avoid this overhead by pickling a fully loaded generator. For example:

import pickle

for i in range(len(batch_gen_train)):
    batch_gen_train[i] # fetch all batches

with open("batch_gen_train.pkl", 'wb') as f:
    pickle.dump(batch_gen_train, f)
Owner
Jussi Leinonen
Data scientist working on Atmospheric Science problems
Jussi Leinonen
Simple, but essential Bayesian optimization package

BayesO: A Bayesian optimization framework in Python Simple, but essential Bayesian optimization package. http://bayeso.org Online documentation Instal

Jungtaek Kim 74 Dec 05, 2022
Deep Inertial Prediction (DIPr)

Deep Inertial Prediction For more information and context related to this repo, please refer to our website. Getting Started (non Docker) Note: you wi

Arcturus Industries 12 Nov 11, 2022
Official Implementation of "Designing an Encoder for StyleGAN Image Manipulation"

Designing an Encoder for StyleGAN Image Manipulation (SIGGRAPH 2021) Recently, there has been a surge of diverse methods for performing image editing

749 Jan 09, 2023
High-resolution networks and Segmentation Transformer for Semantic Segmentation

High-resolution networks and Segmentation Transformer for Semantic Segmentation Branches This is the implementation for HRNet + OCR. The PyTroch 1.1 v

HRNet 2.8k Jan 07, 2023
A machine learning benchmark of in-the-wild distribution shifts, with data loaders, evaluators, and default models.

WILDS is a benchmark of in-the-wild distribution shifts spanning diverse data modalities and applications, from tumor identification to wildlife monitoring to poverty mapping.

P-Lambda 437 Dec 30, 2022
Code for 1st place solution in Sleep AI Challenge SNU Hospital

Sleep AI Challenge SNU Hospital 2021 Code for 1st place solution for Sleep AI Challenge (Note that the code is not fully organized) Refer to the notio

Saewon Yang 13 Jan 03, 2022
an implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch

This work has now been superseded by: https://github.com/sniklaus/revisiting-sepconv sepconv-slomo This is a reference implementation of Video Frame I

Simon Niklaus 985 Jan 08, 2023
Visualizer using audio and semantic analysis to explore BigGAN (Brock et al., 2018) latent space.

BigGAN Audio Visualizer Description This visualizer explores BigGAN (Brock et al., 2018) latent space by using pitch/tempo of an audio file to generat

Rush Kapoor 2 Nov 21, 2022
BanditPAM: Almost Linear-Time k-Medoids Clustering

BanditPAM: Almost Linear-Time k-Medoids Clustering This repo contains a high-performance implementation of BanditPAM from BanditPAM: Almost Linear-Tim

254 Dec 12, 2022
A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"

A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"

張致強 14 Dec 02, 2022
PyTorch implementation of Wide Residual Networks with 1-bit weights by McDonnell (ICLR 2018)

1-bit Wide ResNet PyTorch implementation of training 1-bit Wide ResNets from this paper: Training wide residual networks for deployment using a single

Sergey Zagoruyko 122 Dec 07, 2022
The official PyTorch code for NeurIPS 2021 ML4AD Paper, "Does Thermal data make the detection systems more reliable?"

MultiModal-Collaborative (MMC) Learning Framework for integrating RGB and Thermal spectral modalities This is the official code for NeurIPS 2021 Machi

NeurAI 12 Nov 02, 2022
A weakly-supervised scene graph generation codebase. The implementation of our CVPR2021 paper ``Linguistic Structures as Weak Supervision for Visual Scene Graph Generation''

README.md shall be finished soon. WSSGG 0 Overview 1 Installation 1.1 Faster-RCNN 1.2 Language Parser 1.3 GloVe Embeddings 2 Settings 2.1 VG-GT-Graph

Keren Ye 35 Nov 20, 2022
A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)

Library | Paper | Slack We released two versions of OAG-BERT in CogDL package. OAG-BERT is a heterogeneous entity-augmented academic language model wh

THUDM 58 Dec 17, 2022
An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

deepbci 272 Jan 08, 2023
Open source code for Paper "A Co-Interactive Transformer for Joint Slot Filling and Intent Detection"

A Co-Interactive Transformer for Joint Slot Filling and Intent Detection This repository contains the PyTorch implementation of the paper: A Co-Intera

67 Dec 05, 2022
A library for researching neural networks compression and acceleration methods.

A library for researching neural networks compression and acceleration methods.

Intel Labs 100 Dec 29, 2022
Image Super-Resolution by Neural Texture Transfer

SRNTT: Image Super-Resolution by Neural Texture Transfer Tensorflow implementation of the paper Image Super-Resolution by Neural Texture Transfer acce

Zhifei Zhang 413 Nov 30, 2022
Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021)

PGpoints Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021) Hyeontae Son, Young Min Kim Pre

Hyeontae Son 9 Jun 06, 2022