CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes

Related tags

Deep LearningCHERRY
Overview

CHERRY CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes. CHERRY is based on a deep learning model, which consists of a graph convolutional encoder and a link prediction decoder.

Overview

There are two kind of tasks that CHERRY can work:

  1. Host prediction for virus
  2. Identifying viruses that infect pathogenic bacteria

Users can choose one of the task when running CHERRY. If you have any trouble installing or using CHERRY, please let us know by opening an issue on GitHub or emailing us ([email protected]).

Required Dependencies

  • Python 3.x
  • Numpy
  • Pytorch>1.8.0
  • Networkx
  • Pandas
  • Diamond
  • BLAST
  • MCL
  • Prodigal

All these packages can be installed using Anaconda.

If you want to use the gpu to accelerate the program:

  • cuda
  • Pytorch-gpu

An easiler way to install

We recommend you to install all the package with Anaconda

After cloning this respository, you can use anaconda to install the CHERRY.yaml. This will install all packages you need with gpu mode (make sure you have installed cuda on your system to use the gpu version. Othervise, it will run with cpu version). The command is: conda env create -f CHERRY.yaml

  • For cpu version pytorch: conda install pytorch torchvision torchaudio cpuonly -c pytorch
  • For gpu version pytorch: Search pytorch to find the correct cuda version according to your computer Note: we suggest you to install all the package using conda (both miniconda and anaconda are ok). We supply a

Prepare the database

Due to the limited size of the GitHub, we zip the database. Before using CHEERY, you need to unpack them using the following commands.

cd CHEERY/dataset
bzip2 -d protein.fasta.bz2
bzip2 -d nucl.fasta.bz2
cd ../prokaryote
gunzip *
cd ..

Usage

1 Predicting host for viruses

If you want to predict hosts for viruses, the input should be a fasta file containing the virual sequences. We support an example file named "test_contigs.fa" in the Github folder. Then, the only command that you need to run is

python run_Speed_up.py [--contigs INPUT_FA] [--len MINIMUM_LEN] [--model MODEL] [--topk TOPK_PRED]

Options

  --contigs INPUT_FA
                        input fasta file
  --len MINIMUM_LEN
                        predict only for sequence >= len bp (default 8000)
  --model MODEL (pretrain or retrain)
                        predicting host with pretrained parameters or retrained paramters (default pretrain)
  --topk TOPK_PRED
                        The host prediction with topk score (default 1)

Example

Prediction on species level with pretrained paramters:

python run_Speed_up.py --contigs test_contigs.fa --len 8000 --model pretrain --topk 3

Note: Commonly, you do not need to retrain the model, especially when you do not have gpu unit.

OUTPUT

The format of the output file is a csv file ("final_prediction.csv") which contain the prediction of each virus. Column contig_name is the accession from the input.

Since the topk method is given, we cannot give the how taxaonmic tree for each prediction. However, we will supply a script for you to convert the prediction into a complte taxonmoy tree. Use the following command to generate taxonomy tree:

python run_Taxonomy_tree.py [--k TOPK_PRED]

Because there are k prediction in the "final_prediction.csv" file, you need to specify the k to generate the tree. The output of program is 'Top_k_prediction_taxonomy.csv'.

2 Predicting virus infecting prokaryote

If you want to predict hosts for viruses, you need to supply two kinds of inputs:

  1. Place your prokaryotic genomes in new_prokaryote/ folder.
  2. A fasta file containing the virus squences. Then, the program will output which virus in your fasta file will infect the prkaryotes in the new_prokaryote/ folder.

The command is simlar to the previous one but two more paramter is need:

python run_Speed_up.py [--mode MODE] [--t THRESHOLD]

Example

python run_Speed_up.py --contigs test_contigs.fa --mode prokaryote --t 0.98

Options

  --mode MODE (prokaryote or virus)
                        Switch mode for predicting virus or predicting host
  --t THRESHOLD
                        The confident threshold for predicting virus, the higier the threshold the higher the precision. (default 0.98)

OUTPUT

The format of the output file is a csv file which contain the prediction of each virus. Column prokaryote is the accession of your given prokaryotic genomes. Column virus is the list of viruses that might infect these genomes.

Extension of the parokaryotic genomes database

Due to the limitation of storage on GitHub, we only provided the parokaryote with known interactions (Date up to 2020) in prokaryote folder. If you want to predict interactions with more species, please place your parokaryotic genomes into prokaryote/ folder and add an entry of taxonomy information into dataset/prokaryote.csv. We also recommand you only add the prokaryotes of interest to save the computation resourse and time. This is because all the genomes in prokaryote folder will be used to generate the multimodal graph, which is a O(n^2) algorithm.

Example

If you have a metagenomic data and you know that only E. coli, Butyrivibrio fibrisolvens, and Faecalibacterium prausnitzii exist in the metagenomic data. Then you can placed the genomes of these three species into the prokaryote/ and add the entry in dataset/prokaryote.csv. An example of the entry is look like:

GCF_000007445,Bacteria,Proteobacteria,Gammaproteobacteria,Enterobacterales,Enterobacteriaceae,Escherichia,Escherichia coli

The corresponding header of the entry is: Accession,Superkingdom,Phylum,Class,Order,Family,Genus,Species. If you do not know the whole taxonomy tree, you can directly use a specific name for all columns. Because CHERRY is a link prediction tool, it will directly use the given name for prediction.

Noted: Since our program will use the accession for searching and constructing the knowledge graph, the name of the fasta file of your genomes should be the same as the given accession. For example, if your accession is GCF_000007445, your file name should be GCF_000007445.fa. Otherwise, the program cannot find the entry.

Extension of the virus-prokaryote interactions database

If you know more virus-prokaryote interactions than our pre-trained model (given in Interactiondata), you can add them to train a custom model. Several steps you need to do to train your model:

  1. Add your viral genomes into the nucl.fasta file and run the python refresh.py to generate new protein.fasta and database_gene_to_genome.csv files. They will replace the old one in the dataset/ folder automatically.
  2. Add the entrys of host taxonomy information into dataset/virus.csv. The corresponding header of the entry is: Accession (of the virus), Superkingdom, Phylum, Class, Order, Family, Genus, Species. The required field is Species. You can left it blank if you do not know other fields. Also, the accession of the virus shall be the same as your fasta entry.
  3. Place your prokaryotic genomes into the the prokaryote/ folder and add an entry in dataset/prokaryote.csv. The guideline is the same as the previous section.
  4. Use retrain as the parameter for --mode option to run the program.

References

The paper is submitted to the Briefings in Bioinformatics.

The arXiv version can be found via: CHERRY: a Computational metHod for accuratE pRediction of virus-pRokarYotic interactions using a graph encoder-decoder model

Contact

If you have any questions, please email us: [email protected]

Notes

  1. if the program output an error (which is caused by your machine): Error: mkl-service + Intel(R) MKL: MKL_THREADING_LAYER=INTEL is incompatible with libgomp.so.1 library. You can type in the command export MKL_SERVICE_FORCE_INTEL=1 before runing run_Speed_up.py
Owner
Kenneth Shang
Kenneth Shang
Merlion: A Machine Learning Framework for Time Series Intelligence

Merlion: A Machine Learning Library for Time Series Table of Contents Introduction Installation Documentation Getting Started Anomaly Detection Foreca

Salesforce 2.8k Dec 30, 2022
AI-based, context-driven network device ranking

Batea A batea is a large shallow pan of wood or iron traditionally used by gold prospectors for washing sand and gravel to recover gold nuggets. Batea

Secureworks Taegis VDR 269 Nov 26, 2022
Unsupervised Learning of Video Representations using LSTMs

Unsupervised Learning of Video Representations using LSTMs Code for paper Unsupervised Learning of Video Representations using LSTMs by Nitish Srivast

Elman Mansimov 341 Dec 20, 2022
NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

Göktuğ Karakaşlı 16 Dec 05, 2022
This package contains deep learning models and related scripts for RoseTTAFold

RoseTTAFold This package contains deep learning models and related scripts to run RoseTTAFold This repository is the official implementation of RoseTT

1.6k Jan 03, 2023
Customizable RecSys Simulator for OpenAI Gym

gym-recsys: Customizable RecSys Simulator for OpenAI Gym Installation | How to use | Examples | Citation This package describes an OpenAI Gym interfac

Xingdong Zuo 14 Dec 08, 2022
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
naked is a Python tool which allows you to strip a model and only keep what matters for making predictions.

naked is a Python tool which allows you to strip a model and only keep what matters for making predictions. The result is a pure Python function with no third-party dependencies that you can simply c

Max Halford 24 Dec 20, 2022
Implementation of Segnet, FCN, UNet , PSPNet and other models in Keras.

Image Segmentation Keras : Implementation of Segnet, FCN, UNet, PSPNet and other models in Keras. Implementation of various Deep Image Segmentation mo

Divam Gupta 2.6k Jan 05, 2023
Pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021).

Pytorch code for SS-Net This is a pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021). Environment Code is tested

Sun Ran 1 May 18, 2022
Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion

Feature-Style Encoder for Style-Based GAN Inversion Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion. Code will

InterDigital 63 Jan 03, 2023
Sky Computing: Accelerating Geo-distributed Computing in Federated Learning

Sky Computing Introduction Sky Computing is a load-balanced framework for federated learning model parallelism. It adaptively allocate model layers to

HPC-AI Tech 72 Dec 27, 2022
Pytorch implementation of XRD spectral identification from COD database

XRDidentifier Pytorch implementation of XRD spectral identification from COD database. Details will be explained in the paper to be submitted to NeurI

Masaki Adachi 4 Jan 07, 2023
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

CGTransformer Code for our AAAI 2022 paper "Contrastive-Geometry Transformer network for Generalized 3D Pose Transfer" Contrastive-Geometry Transforme

18 Jun 28, 2022
[ICCV 2021] HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration

HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration Introduction The repository contains the source code and pre-tr

Intelligent Sensing, Perception and Computing Group 55 Dec 14, 2022
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 05, 2022
ML powered analytics engine for outlier detection and root cause analysis.

Website • Docs • Blog • LinkedIn • Community Slack ML powered analytics engine for outlier detection and root cause analysis ✨ What is Chaos Genius? C

Chaos Genius 523 Jan 04, 2023
Official implementation of SynthTIGER (Synthetic Text Image GEneratoR) ICDAR 2021

🐯 SynthTIGER: Synthetic Text Image GEneratoR Official implementation of SynthTIGER | Paper | Datasets Moonbin Yim1, Yoonsik Kim1, Han-cheol Cho1, Sun

Clova AI Research 256 Jan 05, 2023
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

Tom 50 Dec 16, 2022