Code in conjunction with the publication 'Contrastive Representation Learning for Hand Shape Estimation'

Overview

HanCo Dataset & Contrastive Representation Learning for Hand Shape Estimation

Code in conjunction with the publication: Contrastive Representation Learning for Hand Shape Estimation.

This repository contains code for inference of both networks: The one obtained from self-supervised contrastive pre-training and the network trained supervisedly for hand pose estimation. Additionally, we provide examples how to work with the HanCo dataset and release the pytorch Dataset that was used during our pre-training experiments. This dataset is an extension of the FreiHand dataset.

Visit our project page for additional information.

Requirements

Python environment

conda create -n contra-hand python=3.6
conda activate contra-hand
conda install -c pytorch pytorch=1.6.0 torchvision cudatoolkit=10.2
conda install -c conda-forge -c fvcore fvcore transforms3d
pip install pytorch3d transforms3d tqdm pytorch-lightning imgaug open3d matplotlib
pip install git+https://github.com/hassony2/chumpy.git

Hand Pose Dataset

You either need the full HanCo dataset or the small tester data sample (recommended).

Random Background Images

As the hand pose dataset contains green screen images, randomized backgrounds can be used. For our dataset we used 2195 images from Flickr. As these were not all licensed in a permissive manner, we provide a set of background images to use with the dataset. These can be found here.

MANO model

Our supervised training code uses the MANO Hand model, which you need to aquire seperately due to licensing regulations: https://mano.is.tue.mpg.de

In order for our code to work fine copy MANO_RIGHT.pkl from the MANO website to contra-hand/mano_models/MANO_RIGHT.pkl.

We also build on to of the great PyTorch implementation of MANO provided by Yana Hasson et al., which was modified by us and is already contained in this repository.

Trained models

We release both the MoCo pretrained model and the shape estimation network that was derived from it.

In order to get the trained models download and unpack them locally:

curl https://lmb.informatik.uni-freiburg.de/data/HanCo/contra-hand-ckpt.zip -o contra-hand-ckpt.zip & unzip contra-hand-ckpt.zip 

Code

This repository contains scripts that facilitate using the HanCo dataset and building on the results from our publication.

Show dataset

You will need to download the HanCo dataset (or at least the tester). This script gives you some examples on how to work with the dataset.

python show_dataset.py <Path-To-Your-Local-HanCo-Directory>

Use our MoCo trained model

There is a simple script that calculates the cosine similarity score for two hard coded examples:

python run_moco_fw.py

There is the script we used to create the respective figure in our paper.

python run_moco_qualitative_embedding.py

Self-Supervised Training with MoCo

We provide a torch data loader that can be used as a drop-in replacement for MoCo training. The data loader can be found here DatasetUnsupervisedMV.py. It has boolean options that control how the data is provided, these are cross_bg, cross_camera, and cross_time. The get_dataset function also shows the pre-processing that we use, which is slightly different from the standard MoCo pre-processing.

Use our MANO prediction model

The following script allows to run inference on an example image:

run_hand_shape_fw.py <Path-To-Your-Local-HanCo-Directory>
Owner
Computer Vision Group, Albert-Ludwigs-Universität Freiburg
Pattern Recognition and Image Processing
Computer Vision Group, Albert-Ludwigs-Universität Freiburg
Generative Adversarial Networks(GANs)

Generative Adversarial Networks(GANs) Vanilla GAN ClusterGAN Vanilla GAN Model Structure Final Generator Structure A MLP with 2 hidden layers of hidde

Zhenbang Feng 2 Nov 05, 2021
[CVPR2021] Look before you leap: learning landmark features for one-stage visual grounding.

LBYL-Net This repo implements paper Look Before You Leap: Learning Landmark Features For One-Stage Visual Grounding CVPR 2021. Getting Started Prerequ

SVIP Lab 45 Dec 12, 2022
A mini-course offered to Undergrad chemistry students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 19 Dec 19, 2022
Analysis of Antarctica sequencing samples contaminated with SARS-CoV-2

Analysis of SARS-CoV-2 reads in sequencing of 2018-2019 Antarctica samples in PRJNA692319 The samples analyzed here are described in this preprint, wh

Jesse Bloom 4 Feb 09, 2022
Deepfake Scanner by Deepware.

Deepware Scanner (CLI) This repository contains the command-line deepfake scanner tool with the pre-trained models that are currently used at deepware

deepware 110 Jan 02, 2023
Lip Reading - Cross Audio-Visual Recognition using 3D Convolutional Neural Networks

Lip Reading - Cross Audio-Visual Recognition using 3D Convolutional Neural Networks - Official Project Page This repository contains the code develope

Amirsina Torfi 1.7k Dec 18, 2022
PowerGridworld: A Framework for Multi-Agent Reinforcement Learning in Power Systems

PowerGridworld provides users with a lightweight, modular, and customizable framework for creating power-systems-focused, multi-agent Gym environments that readily integrate with existing training fr

National Renewable Energy Laboratory 37 Dec 17, 2022
A machine learning project which can detect and predict the skin disease through image recognition.

ML-Project-2021 A machine learning project which can detect and predict the skin disease through image recognition. The dataset used for this is the H

Debshishu Ghosh 1 Jan 13, 2022
[CVPR 2022] Official code for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration"

MDCA Calibration This is the official PyTorch implementation for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved

MDCA Calibration 21 Dec 22, 2022
A Pytorch Implementation of ClariNet

ClariNet A Pytorch Implementation of ClariNet (Mel Spectrogram -- Waveform) Requirements PyTorch 0.4.1 & python 3.6 & Librosa Examples Step 1. Downlo

Sungwon Kim 286 Sep 15, 2022
OpenDelta - An Open-Source Framework for Paramter Efficient Tuning.

OpenDelta is a toolkit for parameter efficient methods (we dub it as delta tuning), by which users could flexibly assign (or add) a small amount parameters to update while keeping the most paramters

THUNLP 386 Dec 26, 2022
UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus

UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus General info This is

71 Oct 25, 2022
Implementation of paper "Towards a Unified View of Parameter-Efficient Transfer Learning"

A Unified Framework for Parameter-Efficient Transfer Learning This is the official implementation of the paper: Towards a Unified View of Parameter-Ef

Junxian He 216 Dec 29, 2022
Implementation of "Bidirectional Projection Network for Cross Dimension Scene Understanding" CVPR 2021 (Oral)

Bidirectional Projection Network for Cross Dimension Scene Understanding CVPR 2021 (Oral) [ Project Webpage ] [ arXiv ] [ Video ] Existing segmentatio

Hu Wenbo 135 Dec 26, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Dec 30, 2022
Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Şebnem 6 Jan 18, 2022
Some code of the implements of Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network

3D-GMPDCNN Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network PyTorch implementation of "Geological Modeling Usin

5 Nov 21, 2022
Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation

Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation This reposi

First Person Vision @ Image Processing Laboratory - University of Catania 1 Aug 21, 2022
PyTorch implementation of Tacotron speech synthesis model.

tacotron_pytorch PyTorch implementation of Tacotron speech synthesis model. Inspired from keithito/tacotron. Currently not as much good speech quality

Ryuichi Yamamoto 279 Dec 09, 2022
Code for Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks

Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks Under construction. Description Code for Phase diagram of S

Rodrigo Veiga 3 Nov 24, 2022