The official colors of the FAU as matplotlib/seaborn colormaps

Overview

FAU - Colors

PyPI GitHub Code style: black PyPI - Downloads GitHub commit activity

The official colors of Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) as matplotlib / seaborn colormaps.

We support the old colors based on the 2019 CI-guidelines and the brand new 2021 Brand redesign.

Installation

pip install fau-colors

Quick Guide

2021 colormaps

2021 colors

import seaborn as sns

from fau_colors import register_cmaps
register_cmaps()

sns.set_palette("tech")

2019 colormaps

2019 colors

import seaborn as sns

from fau_colors.v2019 import register_cmaps
register_cmaps()

sns.set_palette("tech")

General Usage

The 2019 and the 2021 colors are available in the separate submodules fau_colors.v2019 and fau_colors.v2021 that contain equivalent functions.

Note: For convenience, the v2021 colors can also be accessed from the top-level. In the following examples we will use this shorter notation.

The methods below show the usage with the new color scheme. For the old colors simply replace the module name.

Registering color palettes

The easiest way to use the provided color palettes is to register them as global matplotlib colormaps. This can be done by calling the register_cmaps() function from the respective submodule. All available cmaps can be seen in the images above.

2021 colors

>>> from fau_colors import register_cmaps  # v2021 colors
>>> register_cmaps()

2019 colors

>>> from fau_colors.v2019 import register_cmaps
>>> register_cmaps()

WARNING: The 2019 and 2021 cmaps have overlapping names! This means you can not register both at the same time. You need to call unregister_cmaps from the correct module first, before you can register the other colormaps. If you need colormaps from both CI-guides, use them individually, as shown below.

Getting the raw colors

All primary faculty colors are stored in a namedtuple called colors.

2021 colors

>>> from fau_colors import colors  # v2021 colors
>>> colors
FacultyColors(fau='#002F6C', tech='#779FB5', phil='#FFB81C', med='#00A3E0', nat='#43B02A', wiso='#C8102E')
>>> colors.fau
'#002F6C'

2019 colors

>>> from fau_colors.v2019 import colors
>>> colors
FacultyColors(fau='#003865', tech='#98a4ae', phil='#c99313', med='#00b1eb', nat='#009b77', wiso='#8d1429')
>>> colors.fau
'##003865'

For the 2021 color scheme also the variable colors_dark and colors_all are available. They contain the dark variant of each color, as well as light and dark colors combined, respectively.

Manually getting the colormaps

The colormaps are stored in a namedtuple called cmaps. There are colormaps for the primary colors and colormaps with varying lightness using each color as the base color. The latter colormaps contain 5 colors each with 12.5, 25, 37.5, 62.5, and 100% value of the base color. If you need more than 5 colors see below.

2021 colors

>>> from fau_colors import cmaps  # v2021 colors
>>> # Only get the names here
>>> cmaps._fields
('faculties', 'faculties_dark', 'faculties_all', 'fau', 'fau_dark', 'tech', 'tech_dark', 'phil', 'phil_dark', 'med', 'med_dark', 'nat', 'nat_dark', 'wiso', 'wiso_dark')
>>> cmaps.fau_dark
[(0.01568627450980392, 0.11764705882352941, 0.25882352941176473), (0.3823913879277201, 0.4463667820069205, 0.5349480968858131), (0.629434832756632, 0.6678200692041523, 0.7209688581314879), (0.7529565551710881, 0.7785467128027682, 0.8139792387543252), (0.876478277585544, 0.889273356401384, 0.9069896193771626)]
>>> import seaborn as sns
>>> sns.set_palette(cmaps.fau_dark)

2019 colors

>>> from fau_colors.v2019 import cmaps
>>> # Only get the names here
>>> cmaps._fields
('faculties', 'fau', 'tech', 'phil', 'med', 'nat', 'wiso')
>>> cmaps.fau
[(0.0, 0.2196078431372549, 0.396078431372549), (0.37254901960784315, 0.5103421760861206, 0.6210688196847366), (0.6235294117647059, 0.7062053056516724, 0.772641291810842), (0.7490196078431373, 0.8041368704344483, 0.8484275278738946), (0.8745098039215686, 0.9020684352172241, 0.9242137639369473)]
>>> import seaborn as sns
>>> sns.set_palette(cmaps.fau)

Modifying the colormaps

Sometimes five colors are not enough for a colormap. The easiest way to generate more colors is to use one of the FAU colors as base and then create custom sequential palettes from it. This can be done using sns.light_palette or sns.dark_palette, as explained here.

2021 colors

>>> from fau_colors import colors  # v2021 colors
>>> import seaborn as sns
>>> sns.light_palette(colors.med, n_colors=8)
[(0.9370639121761148, 0.9445189791516921, 0.9520035391049294), (0.8047725363394869, 0.9014173378043252, 0.9416168802970363), (0.6688064000629526, 0.8571184286417537, 0.9309417031889239), (0.5365150242263246, 0.8140167872943868, 0.9205550443810308), (0.40054888794979027, 0.7697178781318151, 0.9098798672729183), (0.2682575121131623, 0.7266162367844482, 0.8994932084650251), (0.13229137583662798, 0.6823173276218767, 0.8888180313569127), (0.0, 0.6392156862745098, 0.8784313725490196)]

2019 colors

>>> from fau_colors.v2019 import colors
>>> import seaborn as sns
>>> sns.light_palette(colors.med, n_colors=8)
[(0.9363137612705862, 0.94473936725293, 0.9520047198366567), (0.8041282890912094, 0.9093574773431737, 0.9477078597351495), (0.6682709982401831, 0.8729927571581465, 0.9432916424086003), (0.5360855260608062, 0.8376108672483904, 0.9389947823070931), (0.40022823520978, 0.8012461470633632, 0.9345785649805439), (0.2680427630304031, 0.765864257153607, 0.9302817048790367), (0.13218547217937693, 0.7294995369685797, 0.9258654875524875), (0.0, 0.6941176470588235, 0.9215686274509803)]c
You might also like...
:small_red_triangle: Ternary plotting library for python with matplotlib
:small_red_triangle: Ternary plotting library for python with matplotlib

python-ternary This is a plotting library for use with matplotlib to make ternary plots plots in the two dimensional simplex projected onto a two dime

Joyplots in Python with matplotlib & pandas :chart_with_upwards_trend:
Joyplots in Python with matplotlib & pandas :chart_with_upwards_trend:

JoyPy JoyPy is a one-function Python package based on matplotlib + pandas with a single purpose: drawing joyplots (a.k.a. ridgeline plots). The code f

A python package for animating plots build on matplotlib.
A python package for animating plots build on matplotlib.

animatplot A python package for making interactive as well as animated plots with matplotlib. Requires Python = 3.5 Matplotlib = 2.2 (because slider

matplotlib: plotting with Python
matplotlib: plotting with Python

Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python. Check out our home page for more inform

Statistical data visualization using matplotlib

seaborn: statistical data visualization Seaborn is a Python visualization library based on matplotlib. It provides a high-level interface for drawing

:small_red_triangle: Ternary plotting library for python with matplotlib
:small_red_triangle: Ternary plotting library for python with matplotlib

python-ternary This is a plotting library for use with matplotlib to make ternary plots plots in the two dimensional simplex projected onto a two dime

Joyplots in Python with matplotlib & pandas :chart_with_upwards_trend:
Joyplots in Python with matplotlib & pandas :chart_with_upwards_trend:

JoyPy JoyPy is a one-function Python package based on matplotlib + pandas with a single purpose: drawing joyplots (a.k.a. ridgeline plots). The code f

A python package for animating plots build on matplotlib.
A python package for animating plots build on matplotlib.

animatplot A python package for making interactive as well as animated plots with matplotlib. Requires Python = 3.5 Matplotlib = 2.2 (because slider

Painlessly create beautiful matplotlib plots.
Painlessly create beautiful matplotlib plots.

Announcement Thank you to everyone who has used prettyplotlib and made it what it is today! Unfortunately, I no longer have the bandwidth to maintain

Comments
Releases(v1.4.3)
Owner
Machine Learning and Data Analytics Lab FAU
Public projects of the Machine Learning and Data Analytics Lab at the Friedrich-Alexander-University Erlangen-Nürnberg
Machine Learning and Data Analytics Lab FAU
Data Visualizer Web-Application

Viz-It Data Visualizer Web-Application If I ask you where most of the data wrangler looses their time ? It is Data Overview and EDA. Presenting "Viz-I

Sagnik Roy 17 Nov 20, 2022
1900-2016 Olympic Data Analysis in Python by plotting different graphs

🔥 Olympics Data Analysis 🔥 In Data Science field, there is a big topic before creating a model for future prediction is Data Analysis. We can find o

Sayan Roy 1 Feb 06, 2022
Missing data visualization module for Python.

missingno Messy datasets? Missing values? missingno provides a small toolset of flexible and easy-to-use missing data visualizations and utilities tha

Aleksey Bilogur 3.4k Dec 29, 2022
Designed a greedy algorithm based on Markov sequential decision-making process in MATLAB/Python to optimize using Gurobi solver

Designed a greedy algorithm based on Markov sequential decision-making process in MATLAB/Python to optimize using Gurobi solver, the wheel size, gear shifting sequence by modeling drivetrain constrai

Sabbella Prasanna 1 Jan 11, 2022
Drug design and development team HackBio internship is a virtual bioinformatics program that introduces students and professional to advanced practical bioinformatics and its applications globally.

-Nyokong. Drug design and development team HackBio internship is a virtual bioinformatics program that introduces students and professional to advance

4 Aug 04, 2022
Small U-Net for vehicle detection

Small U-Net for vehicle detection Vivek Yadav, PhD Overview In this repository , we will go over using U-net for detecting vehicles in a video stream

Vivek Yadav 91 Nov 03, 2022
Create 3d loss surface visualizations, with optimizer path. Issues welcome!

MLVTK A loss surface visualization tool Simple feed-forward network trained on chess data, using elu activation and Adam optimizer Simple feed-forward

7 Dec 21, 2022
Simple implementation of Self Organizing Maps (SOMs) with rectangular and hexagonal grid topologies

py-self-organizing-map Simple implementation of Self Organizing Maps (SOMs) with rectangular and hexagonal grid topologies. A SOM is a simple unsuperv

Jonas Grebe 1 Feb 10, 2022
Plot and save the ground truth and predicted results of human 3.6 M and CMU mocap dataset.

Visualization-of-Human3.6M-Dataset Plot and save the ground truth and predicted results of human 3.6 M and CMU mocap dataset. human-motion-prediction

Gaurav Kumar Yadav 5 Nov 18, 2022
flask extension for integration with the awesome pydantic package

Flask-Pydantic Flask extension for integration of the awesome pydantic package with Flask. Installation python3 -m pip install Flask-Pydantic Basics v

249 Jan 06, 2023
Make visual music sheets for thatskygame (graphical representations of the Sky keyboard)

sky-python-music-sheet-maker This program lets you make visual music sheets for Sky: Children of the Light. It will ask you a few questions, and does

21 Aug 26, 2022
Visualize the training curve from the *.csv file (tensorboard format).

Training-Curve-Vis Visualize the training curve from the *.csv file (tensorboard format). Feature Custom labels Curve smoothing Support for multiple c

Luckky 7 Feb 23, 2022
Python code for solving 3D structural problems using the finite element method

3DFEM Python 3D finite element code This python code allows for solving 3D structural problems using the finite element method. New features will be a

Rémi Capillon 6 Sep 29, 2022
✅ Today I Learn

Today I Learn EDA numpy_100ex numpy_0~10 airline_satisfaction_prediction BERT_naver_movie_classification NLP_prepare NLP_Tweet_Emotion_Recognition tex

Yeonghoo_Ahn 3 Dec 15, 2022
Monochromatic colorscheme for matplotlib with opinionated sensible default

Monochromatic colorscheme for matplotlib with opinionated sensible default If you need a simple monochromatic colorscheme for your matplotlib figures,

Aria Ghora Prabono 2 May 06, 2022
Draw tree diagrams from indented text input

Draw tree diagrams This repository contains two very different scripts to produce hierarchical tree diagrams like this one: $ ./classtree.py collectio

Luciano Ramalho 8 Dec 14, 2022
Write python locally, execute SQL in your data warehouse

RasgoQL Write python locally, execute SQL in your data warehouse ≪ Read the Docs · Join Our Slack » RasgoQL is a Python package that enables you to ea

Rasgo 265 Nov 21, 2022
Generate a 3D Skyline in STL format and a OpenSCAD file from Gitlab contributions

Your Gitlab's contributions in a 3D Skyline gitlab-skyline is a Python command to generate a skyline figure from Gitlab contributions as Github did at

Félix Gómez 70 Dec 22, 2022
哔咔漫画window客户端,界面使用PySide2,已实现分类、搜索、收藏夹、下载、在线观看、waifu2x等功能。

picacomic-windows 哔咔漫画window客户端,界面使用PySide2,已实现分类、搜索、收藏夹、下载、在线观看等功能。 功能介绍 登陆分流,还原安卓端的三个分流入口 分类,搜索,排行,收藏夹使用同一的逻辑,滚轮下滑自动加载下一页,双击打开 漫画详情,章节列表和评论列表 下载功能,目

1.8k Dec 31, 2022
The Python ensemble sampling toolkit for affine-invariant MCMC

emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense

Dan Foreman-Mackey 1.3k Jan 04, 2023