Table recognition inside douments using neural networks

Overview

TableTrainNet

A simple project for training and testing table recognition in documents.

This project was developed to make a neural network which recognizes tables inside documents. I needed an "intelligent" ocr for work, which could automatically recognize tables to treat them separately.

General overview

The project uses the pre-trained neural network offered by Tensorflow. In addition, a config file was used, according to the choosen pre-trained model, to train with object detections tensorflow API

The datasets was taken from:

Required libraries

Before we go on make sure you have everything installed to be able to use the project:

  • Python 3
  • Tensorflow (tested on r1.8)
  • Its object-detection API (remember to install COCO API. If you are on Windows see at the bottom of the readme)
  • Pillow
  • opencv-python
  • pandas
  • pyprind (useful for process bars)

Project pipeline

The project is made up of different parts that acts together as a pipeline.

Take confidence with costants

I have prepared two "costants" files: dataset_costants.py and inference_constants.py. The first contains all those costants that are useful to use to create dataset, the second to make inference with the frozen graph. If you just want to run the project you should modify only those two files.

Transform the images from RGB to single-channel 8-bit grayscale jpeg images

Since colors are not useful for table detection, we can convert all the images in .jpeg 8-bit single channel images. This) transformation is still under testing. Use python dataset/img_to_jpeg.py after setting dataset_costants.py:

  • DPI_EXTRACTION: output quality of the images;
  • PATH_TO_IMAGES: path/to/datase/images;
  • IMAGES_EXTENSION: extension of the extracted images. The only one tested is .jpeg.

Prepare the dataset for Tensorflow

The dataset was take from ICDAR 2017 POD Competition . It comes with a xml notation file with formulas, images and tables per image. Tensorflow instead can build its own TFRecord from csv informations, so we need to convert the xml files into a csv one. Use python dataset/generate_database_csv.py to do this conversion after setting dataset_costants.py:

  • TRAIN_CSV_NAME: name for .csv train output file;
  • TEST_CSV_NAME: name for .csv test output file;
  • TRAIN_CSV_TO_PATH: folder path for TRAIN_CSV_NAME;
  • TEST_CSV_TO_PATH: folder path for TEST_CSV_NAME;
  • ANNOTATIONS_EXTENSION: extension of annotations. In our case is .xml;
  • TRAINING_PERCENTAGE: percentage of images for training
  • TEST_PERCENTAGE: percentage of images for testing
  • TABLE_DICT: dictionary for data labels. For this project there is no reason to change it;
  • MIN_WIDTH_BOX, MIN_HEIGHT_BOX: minimum dimension to consider a box valid; Some networks don't digest well little boxes, so I put this check.

Generate TF records file

csv files and images are ready: now we need to create our TF record file to feed Tensorflow. Use python generate_tf_records.py to create the train and test.record files that we will need later. No need to configure dataset_costants.py

Train the network

Inside trained_models there are some folders. In each one there are two files, a .config and a .txt one. The first contains a tensorflow configuration, that has to be personalized:

  • fine_tune_checkpoint: path to the frozen graph from pre-trained tensorflow models networks;
  • tf_record_input_reader: path to the train.record and test.record file we created before;
  • label_map_path: path to the labels of your dataset.

The latter contains the command to launch from tensorflow/models/research/object-detection and follows this pattern:

python model_main.py \
--pipeline_config_path=path/to/your_config_file.config \
--model_dir=here/we/save/our/model" \ 
--num_train_steps=num_of_iterations \
--alsologtostderr

Other options are inside tensorflow/models/research/object-detection/model_main.py

Prepare frozen graph

When the net has finished the training, you can export a frozen graph to make inference. Tensorflow offers the utility: from tensorflow/models/research/object-detection run:

python export_inference_graph.py \ 
--input_type=image_tensor \
--pipeline_config_path=path/to/automatically/created/pipeline.config \ 
--trained_checkpoint_prefix=path/to/last/model.ckpt-xxx \
--output_directory=path/to/output/dir

Test your graph!

Now that you have your graph you can try it out: Run inference_with_net.py and set inference_costants.py:

  • PATHS_TO_TEST_IMAGE: path list to all the test images;
  • BMP_IMAGE_TEST_TO_PATH: path to which save test output files;
  • PATHS_TO_LABELS: path to .pbtxt label file;
  • MAX_NUM_BOXES: max number of boxes to be considered;
  • MIN_SCORE: minimum score of boxes to be considered;

Then it will be generated a result image for every combination of:

  • PATHS_TO_CKPTS: list path to all frozen graph you want to test;

In addition it will print a "merged" version of the boxes, in which all the best vertically overlapping boxes are merged together to gain accuracy. TEST_SCORES is a list of numbers that tells the program which scores must be merged together.

The procedure is better described in inference_with_net.py.

For every execution a .log file will be produced.

Common issues while installing Tensorflow models

TypeError: can't pickle dict_values objects

This comment will probably solve your problem.

Windows build and python3 support for COCO API dataset

This clone will provide a working source for COCO API in Windows and Python3

Owner
Giovanni Cavallin
Giovanni Cavallin
A collection of resources (including the papers and datasets) of OCR (Optical Character Recognition).

OCR Resources This repository contains a collection of resources (including the papers and datasets) of OCR (Optical Character Recognition). Contents

Zuming Huang 363 Jan 03, 2023
Neural search engine for AI papers

Papers search Neural search engine for ML papers. Demo Usage is simple: input an abstract, get the matching papers. The following demo also showcases

Giancarlo Fissore 44 Dec 24, 2022
Rubik's Cube in pygame with OpenGL

Rubik Rubik's Cube in pygame with OpenGL The script show on the screen a Rubik Cube buit with OpenGL. Then I have also implemented all the possible mo

Gabro 2 Apr 15, 2022
Generate text images for training deep learning ocr model

New version release:https://github.com/oh-my-ocr/text_renderer Text Renderer Generate text images for training deep learning OCR model (e.g. CRNN). Su

Qing 1.2k Jan 04, 2023
It is a image ocr tool using the Tesseract-OCR engine with the pytesseract package and has a GUI.

OCR-Tool It is a image ocr tool made in Python using the Tesseract-OCR engine with the pytesseract package and has a GUI. This is my second ever pytho

Khant Htet Aung 4 Jul 11, 2022
Repository relating to the CVPR21 paper TimeLens: Event-based Video Frame Interpolation

TimeLens: Event-based Video Frame Interpolation This repository is about the High Speed Event and RGB (HS-ERGB) dataset, used in the 2021 CVPR paper T

Robotics and Perception Group 544 Dec 19, 2022
Distort a video using Seam Carving (video) and Vibrato effect (sound)

Distort videos Applies a Seam Carving algorithm (aka liquid rescale) on every frame of a video, and a vibrato effect on the audio to distort the video

AlexZeGamer 6 Dec 06, 2022
make a better chinese character recognition OCR than tesseract

deep ocr See README_en.md for English installation documentation. 只在ubuntu下面测试通过,需要virtualenv安装,安装路径可自行调整: git clone https://github.com/JinpengLI/deep

Jinpeng 1.5k Dec 28, 2022
Code for CVPR'2022 paper ✨ "Predict, Prevent, and Evaluate: Disentangled Text-Driven Image Manipulation Empowered by Pre-Trained Vision-Language Model"

PPE ✨ Repository for our CVPR'2022 paper: Predict, Prevent, and Evaluate: Disentangled Text-Driven Image Manipulation Empowered by Pre-Trained Vision-

Zipeng Xu 34 Nov 28, 2022
Perspective recovery of text using transformed ellipses

unproject_text Perspective recovery of text using transformed ellipses. See full writeup at https://mzucker.github.io/2016/10/11/unprojecting-text-wit

Matt Zucker 111 Nov 13, 2022
An Optical Character Recognition system using Pytesseract/Extracting data from Blood Pressure Reports.

Optical_Character_Recognition An Optical Character Recognition system using Pytesseract/Extracting data from Blood Pressure Reports. As an IOT/Compute

Ramsis Hammadi 1 Feb 12, 2022
Document Layout Analysis Projects

Layout_Analysis Introduction This is an implementation of RLSA and X-Y Cut with OpenCV Dependencies OpenCV 3.0+ How to use Compile with g++ : g++ -std

22 Dec 08, 2022
This is a GUI program which consist of 4 OpenCV projects

Tkinter-OpenCV Project Using Tkinter, Opencv, Mediapipe This is a python GUI program using Tkinter which consist of 4 OpenCV projects 1. Finger Counte

Arya Bagde 3 Feb 22, 2022
Random maze generator and solver

Maze Generator and Solver I wrote a maze generator that works with two commonly known algorithms: Depth First Search and Randomized Prims. Both of the

Daniel Pérez 10 Sep 23, 2022
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
Qrcode Attendence System with Opencv and Pyzbar

Setup process Creates a virtual environment (Scripts that ensure executed Python code uses the Python interpreter and site packages installed inside t

Ganesh 5 Aug 01, 2022
Text Detection from images using OpenCV

EAST Detector for Text Detection OpenCV’s EAST(Efficient and Accurate Scene Text Detection ) text detector is a deep learning model, based on a novel

Abhishek Singh 88 Oct 20, 2022
Programa que viabiliza a OCR (Optical Character Reading - leitura óptica de caracteres) de um PDF.

Este programa tem o intuito de ser um modificador de arquivos PDF. Os arquivos PDFs podem ser 3: PDFs verdadeiros - em que podem ser selecionados o ti

Daniel Soares Saldanha 2 Oct 11, 2021
Solution for Problem 1 by team codesquad for AIDL 2020. Uses ML Kit for OCR and OpenCV for image processing

CodeSquad PS1 Solution for Problem Statement 1 for AIDL 2020 conducted by @unifynd technologies. Problem Given images of bills/invoices, the task was

Burhanuddin Udaipurwala 111 Nov 27, 2022
Demo processor to illustrate OCR-D Python API

ocrd_vandalize/ Demo processor to illustrate the OCR-D/core Python API Description :TODO: write docs :) Installation From PyPI pip3 install ocrd_vanda

Konstantin Baierer 5 May 05, 2022