The audio-video synchronization of MKV Container Format is exploited to achieve data hiding

Overview

1.0 Data Hiding in MKV Container Format

1.1 Brief Description

The audio-video synchronization of MKV Container Format is exploited to achieve data hiding, where the hidden data can be utilized for various management purposes, including hyper-linking, annotation, and authentication

1.2 Video Demonstration @ YouTube

Data Hiding (Hidden Watermark) in MKV Container Format

1.3 Requirements

  • Linux (not tested anywhere else)
  • Python
  • .MKV reader (like VLC player)
  • All the files are required:
    • .MKV video (./VideoForTesting/2mb.mkv)
    • ./convert_xml2mkv.py
    • ./parse_and_convert_mkv2xml.py
    • ./find_data.py
    • ./hide_data.py
    • ./find
    • ./hide
  • Ensure that you have all the permission to access these files. Run the following command: chmod +x convert_xml2mkv.py && chmod +x find_data.py && chmod +x hide_data.py && chmod +x parse_and_convert_mkv2xml.py
  • If the command above doesn't work and Linux prevents your access you may use the following command on any of the affected files: chmod +x filename.extension

1.4 How To Run Data Embedding Process

Note: for screenshots refer to the end of the ./Maxim_Zaika_Data_Hiding_in_MKV_Container.pdf file

  1. Ensure 1.3 Requirements are fulfilled
  2. Run ./hide from your terminal within the folder where files are located.
  3. Enter the name of the .MKV container: 2mb.mkv.
  4. Enter the data that needs to be hidden: 'example'. Write it down!
  5. Enter the SECRET KEY that will be used to decrypt your data in the data detecting process: 'encryption key'. Write it down!
  6. Enter the timecode where data will be saved to: 10.523 or type 'help' to display all the available timecodes. Write it down!
  7. File modified_mkv.mkv should now be created that stores your hidden data.

Note: do not lose text of the hidden data, SECRET KEY, and the timecode. Otherwise, you won't be able to verify it later.

1.5 How To Run Data Detecting Process

  1. Ensure 1.3 Requirements are fulfilled
  2. Run ./find from your terminal within the folder where files are located.
  3. Enter the file name: modified_mkv.mkv.
  4. Enter the text of your hidden data: 'example'.
  5. Enter the SECRET KEY used: 'encryption key'.
  6. Enter the timecode used: 10.523.
  7. If the data is matching then it will show a success.

2.0 Data Embedding Process

2.1 Software Architecture of Data Embedding

DataEmbeddingDesign

2.2 Data Embedding Design

DataEmbeddingDesign

2.3 Data Embedding Pseudocode

Note: this is incomplete representation.

Function main {
  Set a_word -> “word that needs to be written in”
  Set encryption_key -> “key used for the encryption”
  If (length of encryption_key) < (length of a_word) {
	  Set encryption_key -> same length as a_word
  }
  Set a_word -> convert to ascii
  Set encryption_key -> convert to ascii
  Set ascii_a_word -> convert to hexadecimal
  Set ascii_encryption_key -> convert to hexadecimal
  If (length of ascii_encryption_key) < (length of ascii_a_word) { 
	  Set ascii_encryption_key = -> same length as ascii_a_word
  }
  Encrypt a_word(ascii_a_word, ascii_encryption_key, a_word) // encrypt ascii word
                                                             // using original word 
  Convert encrypted word to hexadecimal // because MKV parser accepts hexadecimals
                                        // inside the cluster’s timecode
  Timecodes = [] // read the XML file and identify the timecodes
  Set input_timecode -> “input timecode here”
  Call function embed data (filename, input_timecode, encrypted_word_in_hexadecimal_format)
}

Function embed data {
	Loop through the file {
		Identify the location of the timecode {
			Identify the location of the data inside the cluster’s timecode {
				Write-in the data
			}
		} else not found timecode {
			Try again
		}
	}
}

3.0 Data Detecting Process

3.1 Software Architecture of Data Detecting

DataEmbeddingDesign

3.2 Data Detecting Design

DataEmbeddingDesign

3.3 Data Embedding Pseudocode

Note: this is incomplete representation.

Function detect data {
	Set hexadecimal_word -> ‘the encrypted word’ \\ basically the identical process like in data 
						                                    \\ hiding process
	Loop through the file {
		Loop each line of the file {
			Identify the location of the timecode {
				Identify the data inside the cluster’s timecode {
					Read through the line ignoring first 6 characters // format
				}
				If there is at least 1 miss-match {
					Return error
				} else fully matched {
					Return success
				}
			}
		}
	}
}

4.0 Results

Description Explanation
Limited Number of Cluster's Timecodes Modifying more than two cluster’s timecodes cause slight video distortion; however, modifying even more timecodes causes both video and audio distortions.
Embedding Capacity Passed test of up to 2,500 characters. Assumption is that 2,500 characters should be more than enough for the user.
File Size Increment Original file: 2.1 MB (2,097,641 bytes) -> Modified File (2,500 characters): 2.1 MB (2,122,058 bytes). Increased by 23,417 bytes (1.00%).

5.0 Additional Information

For more information (like testing and background information), refer to the .PDF file attached to this repository: ./Maxim_Zaika_Data_Hiding_in_MKV_Container.pdf

6.0 Credits

It would not be possible to complete this project without MKV > XML > MKV parser created by Vitaly "_Vi" Shukela: https://github.com/vi/mkvparse.

Parser is rewritten for my own needs (for better understanding) and included in this repository to ensure that there is no mismatch with Vitaly's version. If you are interested in the parser, please, refer to his repository provided above. I do not take any credit for its creation.

Owner
Maxim Zaika
Maxim Zaika
Instant neural graphics primitives: lightning fast NeRF and more

Instant Neural Graphics Primitives Ever wanted to train a NeRF model of a fox in under 5 seconds? Or fly around a scene captured from photos of a fact

NVIDIA Research Projects 10.6k Jan 01, 2023
Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition

Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition Official implementation of the Efficient Conforme

Maxime Burchi 145 Dec 30, 2022
MQBench Quantization Aware Training with PyTorch

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
Optimized primitives for collective multi-GPU communication

NCCL Optimized primitives for inter-GPU communication. Introduction NCCL (pronounced "Nickel") is a stand-alone library of standard communication rout

NVIDIA Corporation 2k Jan 09, 2023
The code of “Similarity Reasoning and Filtration for Image-Text Matching” [AAAI2021]

SGRAF PyTorch implementation for AAAI2021 paper of “Similarity Reasoning and Filtration for Image-Text Matching”. It is built on top of the SCAN and C

Ronnie_IIAU 149 Dec 22, 2022
Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation

FCN.tensorflow Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation (FCNs). The implementation is largely based on the

Sarath Shekkizhar 1.3k Dec 25, 2022
A 10000+ hours dataset for Chinese speech recognition

WenetSpeech Official website | Paper A 10000+ Hours Multi-domain Chinese Corpus for Speech Recognition Download Please visit the official website, rea

310 Jan 03, 2023
A PyTorch implementation: "LASAFT-Net-v2: Listen, Attend and Separate by Attentively aggregating Frequency Transformation"

LASAFT-Net-v2 Listen, Attend and Separate by Attentively aggregating Frequency Transformation Woosung Choi, Yeong-Seok Jeong, Jinsung Kim, Jaehwa Chun

Woosung Choi 29 Jun 04, 2022
MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

Felix Wimbauer 494 Jan 06, 2023
A light and fast one class detection framework for edge devices. We provide face detector, head detector, pedestrian detector, vehicle detector......

A Light and Fast Face Detector for Edge Devices Big News: LFD, which is a big update of LFFD, now is released (2021.03.09). It is strongly recommended

YonghaoHe 1.3k Dec 25, 2022
Mail classification with tensorflow and MS Exchange Server (ham or spam).

Mail classification with tensorflow and MS Exchange Server (ham or spam).

Metin Karatas 1 Sep 11, 2021
Demo project for real time anomaly detection using kafka and python

kafkaml-anomaly-detection Project for real time anomaly detection using kafka and python It's assumed that zookeeper and kafka are running in the loca

Rodrigo Arenas 36 Dec 12, 2022
Official PyTorch Implementation of Convolutional Hough Matching Networks, CVPR 2021 (oral)

Convolutional Hough Matching Networks This is the implementation of the paper "Convolutional Hough Matching Network" by J. Min and M. Cho. Implemented

Juhong Min 70 Nov 22, 2022
Code for Neurips2021 Paper "Topology-Imbalance Learning for Semi-Supervised Node Classification".

Topology-Imbalance Learning for Semi-Supervised Node Classification Introduction Code for NeurIPS 2021 paper "Topology-Imbalance Learning for Semi-Sup

Victor Chen 40 Nov 23, 2022
source code for https://arxiv.org/abs/2005.11248 "Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics"

Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics This work will be published in Nature Biomedical

International Business Machines 71 Nov 15, 2022
Attention-guided gan for synthesizing IR images

SI-AGAN Attention-guided gan for synthesizing IR images This repository contains the Tensorflow code for "Pedestrian Gender Recognition by Style Trans

1 Oct 25, 2021
Deep functional residue identification

DeepFRI Deep functional residue identification Citing @article {Gligorijevic2019, author = {Gligorijevic, Vladimir and Renfrew, P. Douglas and Koscio

Flatiron Institute 156 Dec 25, 2022
Spectral Tensor Train Parameterization of Deep Learning Layers

Spectral Tensor Train Parameterization of Deep Learning Layers This repository is the official implementation of our AISTATS 2021 paper titled "Spectr

Anton Obukhov 12 Oct 23, 2022
Minimalistic PyTorch training loop

Backbone for PyTorch training loop Will try to keep it minimalistic. pip install back from back import Bone Features Progress bar Checkpoints saving/l

Kashin 4 Jan 16, 2020
Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Kento Nishi 22 Jul 07, 2022