Revisiting Global Statistics Aggregation for Improving Image Restoration

Related tags

Deep Learningtlsc
Overview

PWC PWC

Revisiting Global Statistics Aggregation for Improving Image Restoration

Xiaojie Chu, Liangyu Chen, Chengpeng Chen, Xin Lu

Paper: https://arxiv.org/pdf/2112.04491.pdf

Introduction

This repository is an official implementation of the TLSC. We propose Test-time Local Statistics Converter (TLSC), which replaces the statistic aggregation region from the entire spatial dimension to the local window, to mitigate the issue between training and testing. Our approach has no requirement of retraining or finetuning, and only induces marginal extra costs.

arch

Illustration of training and testing schemes of image restoration. From left to right: image from the dataset; input for the restorer (patches or entire-image depend on the scheme); aggregating statistics from the feature map. For (a), (b), and (c), statistics are aggregated along the entire spatial dimension. (d) Ours, statistics are aggregated in a local region for each pixel.

Abstract

Global spatial statistics, which are aggregated along entire spatial dimensions, are widely used in top-performance image restorers. For example, mean, variance in Instance Normalization (IN) which is adopted by HINet, and global average pooling (ie, mean) in Squeeze and Excitation (SE) which is applied to MPRNet. This paper first shows that statistics aggregated on the patches-based/entire-image-based feature in the training/testing phase respectively may distribute very differently and lead to performance degradation in image restorers. It has been widely overlooked by previous works. To solve this issue, we propose a simple approach, Test-time Local Statistics Converter (TLSC), that replaces the region of statistics aggregation operation from global to local, only in the test time. Without retraining or finetuning, our approach significantly improves the image restorer's performance. In particular, by extending SE with TLSC to the state-of-the-art models, MPRNet boost by 0.65 dB in PSNR on GoPro dataset, achieves 33.31 dB, exceeds the previous best result 0.6 dB. In addition, we simply apply TLSC to the high-level vision task, ie, semantic segmentation, and achieves competitive results. Extensive quantity and quality experiments are conducted to demonstrate TLSC solves the issue with marginal costs while significant gain.

Usage

Installation

This implementation based on BasicSR which is a open source toolbox for image/video restoration tasks.

git clone https://github.com/megvii-research/tlsc.git
cd tlsc
pip install -r requirements.txt
python setup.py develop

Quick Start (Single Image Inference)

Main Results

Method GoPro GoPro HIDE HIDE REDS REDS
PSNR SSIM PSNR SSIM PSNR SSIM
HINet 32.71 0.959 30.33 0.932 28.83 0.863
HINet-local (ours) 33.08 0.962 30.66 0.936 28.96 0.865
MPRNet 32.66 0.959 30.96 0.939 - -
MPRNet-local (ours) 33.31 0.964 31.19 0.942 - -

Evaluation

Image Deblur - GoPro dataset (Click to expand)
  • prepare data

    • mkdir ./datasets/GoPro

    • download the test set in ./datasets/GoPro/test (refer to MPRNet)

    • it should be like:

      ./datasets/
      ./datasets/GoPro/test/
      ./datasets/GoPro/test/input/
      ./datasets/GoPro/test/target/
  • eval

    • download pretrained HINet to ./experiments/pretrained_models/HINet-GoPro.pth

    • python basicsr/test.py -opt options/test/HIDE/MPRNetLocal-HIDE.yml

    • download pretrained MPRNet to ./experiments/pretrained_models/MPRNet-GoPro.pth

    • python basicsr/test.py -opt options/test/HIDE/MPRNetLocal-HIDE.yml

Image Deblur - HIDE dataset (Click to expand)
  • prepare data

    • mkdir ./datasets/HIDE

    • download the test set in ./datasets/HIDE/test (refer to MPRNet)

    • it should be like:

      ./datasets/
      ./datasets/HIDE/test/
      ./datasets/HIDE/test/input/
      ./datasets/HIDE/test/target/
  • eval

    • download pretrained HINet to ./experiments/pretrained_models/HINet-GoPro.pth

    • python basicsr/test.py -opt options/test/GoPro/MPRNetLocal-GoPro.yml

    • download pretrained MPRNet to ./experiments/pretrained_models/MPRNet-GoPro.pth

    • python basicsr/test.py -opt options/test/GoPro/MPRNetLocal-GoPro.yml

Image Deblur - REDS dataset (Click to expand)
  • prepare data

    • mkdir ./datasets/REDS

    • download the val set from val_blur, val_sharp to ./datasets/REDS/ and unzip them.

    • it should be like

      ./datasets/
      ./datasets/REDS/
      ./datasets/REDS/val/
      ./datasets/REDS/val/val_blur_jpeg/
      ./datasets/REDS/val/val_sharp/
      
    • python scripts/data_preparation/reds.py

      • flatten the folders and extract 300 validation images.
  • eval

    • download pretrained HINet to ./experiments/pretrained_models/HINet-REDS.pth
    • python basicsr/test.py -opt options/test/REDS/HINetLocal-REDS.yml

Tricks: Change the 'fast_imp: false' (naive implementation) to 'fast_imp: true' (faster implementation) in MPRNetLocal config can achieve faster inference speed.

License

This project is under the MIT license, and it is based on BasicSR which is under the Apache 2.0 license.

Citations

If TLSC helps your research or work, please consider citing TLSC.

@article{chu2021tlsc,
  title={Revisiting Global Statistics Aggregation for Improving Image Restoration},
  author={Chu, Xiaojie and Chen, Liangyu and and Chen, Chengpeng and Lu, Xin},
  journal={arXiv preprint arXiv:2112.04491},
  year={2021}
}

Contact

If you have any questions, please contact [email protected] or [email protected].

Owner
MEGVII Research
Power Human with AI. 持续创新拓展认知边界 非凡科技成就产品价值
MEGVII Research
CLIP (Contrastive Language–Image Pre-training) for Italian

Italian CLIP CLIP (Radford et al., 2021) is a multimodal model that can learn to represent images and text jointly in the same space. In this project,

Italian CLIP 114 Dec 29, 2022
Multiple-Object Tracking with Transformer

TransTrack: Multiple-Object Tracking with Transformer Introduction TransTrack: Multiple-Object Tracking with Transformer Models Training data Training

Peize Sun 537 Jan 04, 2023
Vector.ai assignment

fabio-tests-nisargatman Low Level Approach: ###Tables: continents: id*, name, population, area, createdAt, updatedAt countries: id*, name, population,

Ravi Pullagurla 1 Nov 09, 2021
Model Zoo for AI Model Efficiency Toolkit

We provide a collection of popular neural network models and compare their floating point and quantized performance.

Qualcomm Innovation Center 137 Jan 03, 2023
Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020)

Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020) Official implementation of: Forest R-CNN: Large-Vo

Jialian Wu 54 Jan 06, 2023
Code release to accompany paper "Geometry-Aware Gradient Algorithms for Neural Architecture Search."

Geometry-Aware Gradient Algorithms for Neural Architecture Search This repository contains the code required to run the experiments for the DARTS sear

18 May 27, 2022
Python interface for SmartRF Sniffer 2 Firmware

#TI SmartRF Packet Sniffer 2 Python Interface TI Makes available a nice packet sniffer firmware, which interfaces to Wireshark. You can see this proje

Colin O'Flynn 3 May 18, 2021
Facilitates implementing deep neural-network backbones, data augmentations

Introduction Nowadays, the training of Deep Learning models is fragmented and unified. When AI engineers face up with one specific task, the common wa

40 Dec 29, 2022
Range Image-based LiDAR Localization for Autonomous Vehicles Using Mesh Maps

Range Image-based 3D LiDAR Localization This repo contains the code for our ICRA2021 paper: Range Image-based LiDAR Localization for Autonomous Vehicl

Photogrammetry & Robotics Bonn 208 Dec 15, 2022
Code for our CVPR 2022 Paper "GEN-VLKT: Simplify Association and Enhance Interaction Understanding for HOI Detection"

GEN-VLKT Code for our CVPR 2022 paper "GEN-VLKT: Simplify Association and Enhance Interaction Understanding for HOI Detection". Contributed by Yue Lia

Yue Liao 47 Dec 04, 2022
Spatial Sparse Convolution Library

SpConv: Spatially Sparse Convolution Library PyPI Install Downloads CPU (Linux Only) pip install spconv CUDA 10.2 pip install spconv-cu102 CUDA 11.1 p

Yan Yan 1.2k Jan 07, 2023
CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP

CLIP-GEN [简体中文][English] 本项目在萤火二号集群上用 PyTorch 实现了论文 《CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP》。 CLIP-GEN 是一个 Language-F

75 Dec 29, 2022
Reproduced Code for Image Forgery Detection papers.

Image Forgery Detection With over 4.5 billion active internet users, the amount of multimedia content being shared every day has surpassed everyone’s

Umar Masud 15 Dec 06, 2022
Kaggle competition: Springleaf Marketing Response

PruebaEnel Prueba Kaggle-Springleaf-master Prueba Kaggle-Springleaf Kaggle competition: Springleaf Marketing Response Competencia de Kaggle: Marketing

1 Feb 09, 2022
A collection of Google research projects related to Federated Learning and Federated Analytics.

Federated Research Federated Research is a collection of research projects related to Federated Learning and Federated Analytics. Federated learning i

Google Research 483 Jan 05, 2023
The MATH Dataset

Measuring Mathematical Problem Solving With the MATH Dataset This is the repository for Measuring Mathematical Problem Solving With the MATH Dataset b

Dan Hendrycks 267 Dec 26, 2022
Code to reproduce experiments in the paper "Explainability Requires Interactivity".

Explainability Requires Interactivity This repository contains the code to train all custom models used in the paper Explainability Requires Interacti

Digital Health & Machine Learning 5 Apr 07, 2022
Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation This is an unofficial PyTorch

MINDs Lab 170 Jan 04, 2023
This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset.

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Up

19 Jan 16, 2022