PCGNN - Procedural Content Generation with NEAT and Novelty

Related tags

Deep LearningPCGNN
Overview

PCGNN - Procedural Content Generation with NEAT and Novelty

Generation ApproachMetricsPaperPosterExamples

About

This is a research project for a BSc (Hons) degree at the University of the Witwatersrand, Johannesburg. It's about combining novelty search and NeuroEvolution of Augmenting Topologies (NEAT) for procedural level generation. We also investigate two new metrics for evaluating the diversity and difficulty of levels. This repo contains our code as well as the final report.

If you just want to get started generating or playing levels, then please look at how to generate levels or the examples. Also feel free to look at the report or a poster that summarises our approach. For information about the metrics and how to use them, see here.

General structure

The main structure of the code is (hopefully) somewhat understandable. First of all, to run any python file in here, use ./run.sh path/to/python/file instead of using python directly, because otherwise modules are not recognised.

Most code in here can be categorised into 3 main archetypes:

  1. General / Method code. This is how the methods were actually implemented, and these files don't do anything useful when run on their own.
  2. Runs / Experiment code. This is a large chunk of what is in here, specifically it is code that runs the methods in some way, and generates results. Most of the results that we generate are in python pickle format.
  3. Analysis Code. We have a pretty clear separation between experiment code (which runs the methods), and analysis code, which takes in the results and generates some usable output, like images, tables, graphs, etc.

File Structure

Most of these are relative to ./src

Method Code
├── novelty_neat     -> Our actual method
├── main
├── baselines
├── games
├── common
├── metrics

Instrumental
├── experiments
├── pipelines
├── runs
├── run.sh
├── scripts
└── slurms

Analysis
├── analysis
├── external

Data
├── levels
├── logs
├── results
├── ../results

Document
├── ../doc/report.pdf

Explanation

The method roughly works as follows:

  1. Evolve a neural network using NEAT (with neat-python)
  2. The fitness function for each neural network is as follows:
    1. Generate N levels per network
    2. Calculate the average solvability of these N levels
    3. Calculate how different these N levels are from each other (called intra-novelty). Calculate the average of this.
    4. Calculate how different these N levels are from the other networks' levels (normal novelty)
    5. Fitness (network) = w1 * Solvability + w2 * Intra-Novelty + w3 * Novelty.
  3. Update the networks using the above calculated fitness & repeat for X generations.

After this 'training' process, take the best network and use it to generate levels in real time.

The way novelty is calculated can be found in the report, or from the original paper by Joel Lehman and Kenneth O. Stanley, here.

We compare levels by considering a few different distance functions, like the normalised Hamming Distance and Image Hashing, but others can also be used.

Get started

To get started you would require a python environment, and env.yml is provided to quickly get started with Conda. Use it like: conda create -f env.yml. There is also another environment that is used specifically for interacting with the gym_pcgrl codebase. If that is something you want to do, then create another environment from the env_pcgrl.yml file.

For full functionality, you will also need java installed. The openjdk 16.0.1 2021-04-20 version worked well.

Additionally, most of the actual experiments used Weights & Biases to log experiments and results, so you would also need to log in using your credentials. The simple entry points described below should not require it.

Entry Points

At the moment, the easiest way to interact with the codebase would be to use the code in src/main/.

Generate Levels.

To have a go at generating levels, then you can use the functions provided in src/main/main.py. Specifically you can call this (remember to be in the src directory before running these commands):

./run.sh main/main.py --method noveltyneat --game mario --mode generate --width 114 --height 14

The above allows you to view some generated levels.

Playing Levels

You can also play the (Mario) levels, or let an agent play them. After generating a level using the above, you can play it by using:

./run.sh main/main.py --game mario --command play-human --filename test_level.txt

Or you can let an A* agent play it using

./run.sh main/main.py --game mario --command play-agent --filename test_level.txt

Features

Works for Tilemaps

Mario Mario

Generates arbitrary sized levels without retraining

Mario

Mario-28 Mario-56 Mario-114 Mario-228

Maze



Experiments

We have many different experiments, with the following meaning:

Generalisation - Generate Larger levels

  • v206: Mario
  • v104: Maze NEAT
  • v107: Maze DirectGA

Metrics

  • v202: Mario
  • v106: Maze

Method runs

  • v105: Maze NEAT
  • v102: Maze DirectGA
  • v204: Mario NEAT
  • v201: Mario DirectGA

The PCGRL code can be found in ./src/external/gym-pcgrl

Reproducing

Our results that were shown and mentioned in the report are mainly found in src/results/.

The following describes how to reproduce our results. Note, there might be some difference in the ordering of the images (e.g. mario-level-0.png and mario-level-1.png will swap), but the set of level images generated should be exactly the same.

The whole process contains 3 steps, and does assume a Slurm based cluster scheduler. Please also change the logfile locations (look at running src/pipelines/replace_all_paths.sh from the repository root after changing paths in there - this updates all paths, and decompresses some results). Our partition name was batch, so this also potentially needs to be updated in the Slurm scripts.

You need to run the following three scripts, in order, and before you start the next one, all the jobs from the previous one must have finished.

Note, timing results probably will differ, and for fairness, we recommend using a machine with at least 8 cores, as we do usually run multiple seeds in parallel. Do not continue on to the next step before all runs in the current one have finished. First of all, cd src/pipelines

  1. ./reproduce_full.sh -> Runs the DirectGA & NoveltyNEAT experiments.
  2. ./analyse_all.sh -> Reruns the metric calculations on the above, and saves it to a easy to work with format
  3. ./finalise_analysis.sh -> Uses the above results to create figures and tables.

The analysis runs (steps 2 and 3.) should automatically use the latest results. If you want to change this, then before going from one step to the next, you will need to manually update the location of the .p files, e.g. between step 1. and 2., you need to update

  • src/analysis/proper_experiments/v200/for_mario_generation_1.py,
  • src/analysis/proper_experiments/v100/for_maze_1.py,
  • src/analysis/proper_experiments/v100/analyse_104.py
  • src/analysis/proper_experiments/v200/analyse_206.py.

Likewise, between step 2. and 3., you need to update (only if you don't want to analyse the latest runs.)

  • src/analysis/proper_experiments/v400/analyse_all_statistical_tests.py and
  • src/analysis/proper_experiments/v400/analyse_all_metrics_properly.py.

For PCGRL, the runs do take quite long, so it is suggested to use our models / results. If you really want to rerun the training, you can look at the Slurm scripts in src/slurms/all_pcgrl/*.batch.

For the PCGRL inference, there are two steps to do, specifically:

  1. Run infer_pcgrl.py
  2. Then run the analysis scripts again, specifically analyse_all.sh and finalise_analysis.sh (noting to change the PCGRL filepaths in for_mario_generation_1.py and for_maze_1.py)

Note: The models for turtle (both Mario and Maze) were too large for Github and are thus not included here, but wide is.

Metrics

We also introduce 2 metrics to measure the diversity and difficulty of levels using A* agents. The code for these metrics are in metrics/a_star/a_star_metrics.py.

A* Diversity Metric

The A* diversity metric uses the trajectory of the agent on two levels to evaluate the diversity. Levels that are solved using different paths are marked as diverse, whereas levels with similar paths are marked as similar.

Largely Similar levels

Diversity = 0.08

Left         Right

Different Levels

Diversity = 0.27

Left         Right

All paths

The green and orange paths are quite similar, leading to low diversity

A* Difficulty

This metric measures how much of the search tree of an A* agent needs to be expanded before the agent can solve the level - more expansion indicates more exploration is required and that the level is more difficult.

Left         Right

Applying the metrics code to levels is done in (among others) src/runs/proper_experiments/v300_metrics.

We also experimented with using RL agents to measure the above characteristics, and results looked promising, but the implementation posed some challenges.

Feel free to look in

  • metrics/rl/tabular/rl_agent_metric.py
  • metrics/rl/tabular/tabular_rl_agent.py
  • metrics/rl/tabular/rl_difficulty_metric.py

for this code.

Assorted

Island Models

There is also some code (not thoroughly tested) that uses multiple island populations and performs regular migration between them and these can be found in novelty_neat/mario/test/island_mario.py, novelty_neat/maze/test/island_model.py and src/runs/proper_experiments/v200_mario/v203_island_neat.py.

Other repositories and projects used

These can be found in src/external. We did edit and adapt some of the code, but most of it is still original.

Some ideas from here

And some snippets from Stack Overflow, which I've tried to reference where they were used.

Acknowledgements

This work is based on the research supported wholly by the National Research Foundation of South Africa (Grant UID 133358).

Owner
Michael Beukman
Michael Beukman
Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Ibai Gorordo 35 Sep 07, 2022
Repository for "Exploring Sparsity in Image Super-Resolution for Efficient Inference", CVPR 2021

SMSR Reposity for "Exploring Sparsity in Image Super-Resolution for Efficient Inference" [arXiv] Highlights Locate and skip redundant computation in S

Longguang Wang 225 Dec 26, 2022
This is the code for ACL2021 paper A Unified Generative Framework for Aspect-Based Sentiment Analysis

This is the code for ACL2021 paper A Unified Generative Framework for Aspect-Based Sentiment Analysis Install the package in the requirements.txt, the

108 Dec 23, 2022
[ICML 2021] "Graph Contrastive Learning Automated" by Yuning You, Tianlong Chen, Yang Shen, Zhangyang Wang

Graph Contrastive Learning Automated PyTorch implementation for Graph Contrastive Learning Automated [talk] [poster] [appendix] Yuning You, Tianlong C

Shen Lab at Texas A&M University 80 Nov 23, 2022
A project which aims to protect your privacy using inexpensive hardware and easily modifiable software

Protecting your privacy using an ESP32, an IR sensor and a python script This project, which I personally call the "never-gonna-catch-me-in-the-act-ev

8 Oct 10, 2022
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

Katsuya Hyodo 8 Oct 03, 2022
Codebase for BMVC 2021 paper "Text Based Person Search with Limited Data"

Text Based Person Search with Limited Data This is the codebase for our BMVC 2021 paper. Please bear with me refactoring this codebase after CVPR dead

Xiao Han 33 Nov 24, 2022
Analyzing basic network responses to novel classes

novelty-detection Analyzing how AlexNet responds to novel classes with varying degrees of similarity to pretrained classes from ImageNet. If you find

Noam Eshed 34 Oct 02, 2022
AAAI 2022: Stationary diffusion state neural estimation

Stationary Diffusion State Neural Estimation Although many graph-based clustering methods attempt to model the stationary diffusion state in their obj

绽琨 33 Nov 24, 2022
Equivariant Imaging: Learning Beyond the Range Space

Equivariant Imaging: Learning Beyond the Range Space Equivariant Imaging: Learning Beyond the Range Space Dongdong Chen, Julián Tachella, Mike E. Davi

Dongdong Chen 46 Jan 01, 2023
PartImageNet is a large, high-quality dataset with part segmentation annotations

PartImageNet: A Large, High-Quality Dataset of Parts We will release our dataset and scripts soon after cleaning and approval. Introduction PartImageN

Ju He 77 Nov 30, 2022
Machine Learning Privacy Meter: A tool to quantify the privacy risks of machine learning models with respect to inference attacks, notably membership inference attacks

ML Privacy Meter Machine learning is playing a central role in automated decision making in a wide range of organization and service providers. The da

Data Privacy and Trustworthy Machine Learning Research Lab 357 Jan 06, 2023
Reporting and Visualization for Hazardous Events

Reporting and Visualization for Hazardous Events

Jv Kyle Eclarin 2 Oct 03, 2021
A baseline code for VSPW

A baseline code for VSPW Preparation Download VSPW dataset The VSPW dataset with extracted frames and masks is available here.

28 Aug 22, 2022
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 09, 2023
Publication describing 3 ML examples at NSLS-II and interfacing into Bluesky

Machine learning enabling high-throughput and remote operations at large-scale user facilities. Overview This repository contains the source code and

BNL 4 Sep 24, 2022
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RMNet: Equivalently Removing Residual Connection from Networks This repository is the official implementation of "RMNet: Equivalently Removing Residua

184 Jan 04, 2023
Python scripts using the Mediapipe models for Halloween.

Mediapipe-Halloween-Examples Python scripts using the Mediapipe models for Halloween. WHY Mainly for fun. But this repository also includes useful exa

Ibai Gorordo 23 Jan 06, 2023
This repository is the official implementation of Using Time-Series Privileged Information for Provably Efficient Learning of Prediction Models

Using Time-Series Privileged Information for Provably Efficient Learning of Prediction Models Link to paper Abstract We study prediction of future out

Rickard Karlsson 2 Aug 19, 2022
Systemic Evolutionary Chemical Space Exploration for Drug Discovery

SECSE SECSE: Systemic Evolutionary Chemical Space Explorer Chemical space exploration is a major task of the hit-finding process during the pursuit of

64 Dec 16, 2022