Codebase for BMVC 2021 paper "Text Based Person Search with Limited Data"

Related tags

Deep LearningTextReID
Overview

Text Based Person Search with Limited Data

PWC

This is the codebase for our BMVC 2021 paper.

Please bear with me refactoring this codebase after CVPR deadline πŸ˜…

Abstract

Text-based person search (TBPS) aims at retrieving a target person from an image gallery with a descriptive text query. Solving such a fine-grained cross-modal retrieval task is challenging, which is further hampered by the lack of large-scale datasets. In this paper, we present a framework with two novel components to handle the problems brought by limited data. Firstly, to fully utilize the existing small-scale benchmarking datasets for more discriminative feature learning, we introduce a cross-modal momentum contrastive learning framework to enrich the training data for a given mini-batch. Secondly, we propose to transfer knowledge learned from existing coarse-grained large-scale datasets containing image-text pairs from drastically different problem domains to compensate for the lack of TBPS training data. A transfer learning method is designed so that useful information can be transferred despite the large domain gap. Armed with these components, our method achieves new state of the art on the CUHK-PEDES dataset with significant improvements over the prior art in terms of Rank-1 and mAP.

Comments
  • Research prepared to obtain a diploma degree in computer and Automation Engineering.

    Research prepared to obtain a diploma degree in computer and Automation Engineering.

    Hello!

    My research focuses on Person search using Visual-Textual Attributes. Having said that, I would like to use your model to assist me in my project, but I have some issues when I finish train and test the model. My problem is trying to write code to run the model to get the same response as the photo. so Can you help me please!

    photo_2022-08-07_18-44-28

    opened by ram7772 6
  • Cannot find test_query and train_query folders

    Cannot find test_query and train_query folders

    Hi @BrandonHanx

    In the ReadMe file, it is mentioned to setup the datasets dir as follows:

    └── cuhkpedes
        β”œβ”€β”€ annotations
        β”‚   β”œβ”€β”€ test.json
        β”‚   β”œβ”€β”€ train.json
        β”‚   └── val.json
        β”œβ”€β”€ clip_vocab_vit.npy
        └── imgs
            β”œβ”€β”€ cam_a
            β”œβ”€β”€ cam_b
            β”œβ”€β”€ CUHK01
            β”œβ”€β”€ CUHK03
            β”œβ”€β”€ Market
            β”œβ”€β”€ test_query
            └── train_query
    

    After downloading the cuhkpedes data set, we get only the imgs folder, containing cam_a, cam_b and CUHK01 folders. there is no test_query and train_query folders. Also, these folders are not in the repository. Could you provide more information regarding on these folders, more exactly, what kind of information they contain and how they must be set up?

    Also, there are few more folders that are not part of the cuhkpedes, such as CUHK03 and Market. Do we need these data sets to reproduce the results?

    Best regards, liviust

    opened by liviust 5
  • some problem in training and testing

    some problem in training and testing

    Hello

    I have some problem. first: I don't find test_query and train_query file when I get images from [Dr. Shuang Li] second: I have this problem for testing and training.

    image

    opened by ram7772 4
  • Problem about the clip_vocab_vit.npy

    Problem about the clip_vocab_vit.npy

    Hi :) I have a question about the pre-processing document clip_vocab_vit.npy. My understanding is that it contains the tensor of the CLIP-Text-Encoder output corresponding to each word (total 9408). My question is, the output dimension of CLIP-TEXT-ENCODER is 1024, but the tensor dimension of each word in clip_vocab_vit.npy is 512. Is there some other operation in it? Thanks

    opened by Frost-Yang-99 2
  • There is only caption_all.json in the dataset CUHK-PEDES, what are the train.json and test.json in the dataset part

    There is only caption_all.json in the dataset CUHK-PEDES, what are the train.json and test.json in the dataset part

    Describe the bug A clear and concise description of what the bug is.

    To Reproduce Steps to reproduce the behavior:

    1. Go to '...'
    2. Click on '....'
    3. Scroll down to '....'
    4. See error

    Expected behavior A clear and concise description of what you expected to happen.

    Screenshots If applicable, add screenshots to help explain your problem.

    Desktop (please complete the following information):

    • OS: [e.g. iOS]
    • Browser [e.g. chrome, safari]
    • Version [e.g. 22]

    Smartphone (please complete the following information):

    • Device: [e.g. iPhone6]
    • OS: [e.g. iOS8.1]
    • Browser [e.g. stock browser, safari]
    • Version [e.g. 22]

    Additional context Add any other context about the problem here.

    opened by SwimKY 1
Releases(v0.1.1)
Owner
Xiao Han
Ph.D. student @ UoSurrey CVSSP, B.Eng. @ ZJU ISEE
Xiao Han
Gesture-Volume-Control - This Python program can adjust the system's volume by using hand gestures

Gesture-Volume-Control This Python program can adjust the system's volume by usi

VatsalAryanBhatanagar 1 Dec 30, 2021
A new play-and-plug method of controlling an existing generative model with conditioning attributes and their compositions.

Viz-It Data Visualizer Web-Application If I ask you where most of the data wrangler looses their time ? It is Data Overview and EDA. Presenting "Viz-I

NVIDIA Research Projects 66 Jan 01, 2023
Official pytorch code for SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal

SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal This is the official pytorch code for SSAT: A Symmetric Semantic-

ForeverPupil 57 Dec 13, 2022
Robotic Process Automation in Windows and Linux by using Driagrams.net BPMN diagrams.

BPMN_RPA Robotic Process Automation in Windows and Linux by using BPMN diagrams. With this Framework you can draw Business Process Model Notation base

23 Dec 14, 2022
Personalized Federated Learning using Pytorch (pFedMe)

Personalized Federated Learning with Moreau Envelopes (NeurIPS 2020) This repository implements all experiments in the paper Personalized Federated Le

Charlie Dinh 226 Dec 30, 2022
Finetuning Pipeline

KLUE Baseline Korean(ν•œκ΅­μ–΄) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022
TrackFormer: Multi-Object Tracking with Transformers

TrackFormer: Multi-Object Tracking with Transformers This repository provides the official implementation of the TrackFormer: Multi-Object Tracking wi

Tim Meinhardt 321 Dec 29, 2022
Code for our paper "MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction" published at ICCV 2021.

MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction This repository contains the code for the p

Sven 30 Jan 05, 2023
Text-to-SQL in the Wild: A Naturally-Occurring Dataset Based on Stack Exchange Data

SEDE SEDE (Stack Exchange Data Explorer) is new dataset for Text-to-SQL tasks with more than 12,000 SQL queries and their natural language description

Rupert. 83 Nov 11, 2022
[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.

[ICLR 2021] RAPID: A Simple Approach for Exploration in Reinforcement Learning This is the Tensorflow implementation of ICLR 2021 paper Rank the Episo

Daochen Zha 48 Nov 21, 2022
This is an official implementation for "Self-Supervised Learning with Swin Transformers".

Self-Supervised Learning with Vision Transformers By Zhenda Xie*, Yutong Lin*, Zhuliang Yao, Zheng Zhang, Qi Dai, Yue Cao and Han Hu This repo is the

Swin Transformer 529 Jan 02, 2023
How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

Bogdan Kulynych 49 Nov 05, 2022
ImageNet Adversarial Image Evaluation

ImageNet Adversarial Image Evaluation This repository contains the code and some materials used in the experimental work presented in the following pa

Utku Ozbulak 11 Dec 26, 2022
Personal implementation of paper "Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval"

Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval This repo provides personal implementation of paper Approximate Ne

John 8 Oct 07, 2022
Efficient training of deep recommenders on cloud.

HybridBackend Introduction HybridBackend is a training framework for deep recommenders which bridges the gap between evolving cloud infrastructure and

Alibaba 111 Dec 23, 2022
CLIP (Contrastive Language–Image Pre-training) for Italian

Italian CLIP CLIP (Radford et al., 2021) is a multimodal model that can learn to represent images and text jointly in the same space. In this project,

Italian CLIP 114 Dec 29, 2022
CrossMLP - The repository offers the official implementation of our BMVC 2021 paper (oral) in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
PyTorch implementation of saliency map-aided GAN for Auto-demosaic+denosing

Saiency Map-aided GAN for RAW2RGB Mapping The PyTorch implementations and guideline for Saiency Map-aided GAN for RAW2RGB Mapping. 1 Implementations B

Yuzhi ZHAO 20 Oct 24, 2022
The official homepage of the COCO-Stuff dataset.

The COCO-Stuff dataset Holger Caesar, Jasper Uijlings, Vittorio Ferrari Welcome to official homepage of the COCO-Stuff [1] dataset. COCO-Stuff augment

Holger Caesar 715 Dec 31, 2022
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a

Tianxiang Sun 149 Jan 04, 2023