Main Results on ImageNet with Pretrained Models

Related tags

Deep LearningSPACH
Overview

This repository contains Pytorch evaluation code, training code and pretrained models for the following projects:

Main Results on ImageNet with Pretrained Models

name [email protected] #params FLOPs url
SPACH-Conv-MS-S 81.6 44M 7.2G github
SPACH-Trans-MS-S 82.9 40M 7.6G github
SPACH-MLP-MS-S 82.1 46M 8.2G github
SPACH-Hybrid-MS-S 83.7 63M 11.2G github
SPACH-Hybrid-MS-S+ 83.9 63M 12.3G github
sMLPNet-T 81.9 24M 5.0G
sMLPNet-S 83.1 49M 10.3G github
sMLPNet-B 83.4 66M 14.0G github
Shift-T / light 79.4 20M 3.0G github
Shift-T 81.7 29M 4.5G github
Shift-S / light 81.6 34M 5.7G github
Shift-S 82.8 50M 8.8G github

Usage

Install

First, clone the repo and install requirements:

git clone https://github.com/microsoft/Spach
pip install -r requirements.txt

Data preparation

Download and extract ImageNet train and val images from http://image-net.org/. The directory structure is the standard layout for the torchvision datasets.ImageFolder, and the training and validation data is expected to be in the train/ folder and val/ folder respectively:

/path/to/imagenet/
  train/
    class1/
      img1.jpeg
    class2/
      img2.jpeg
  val/
    class1/
      img3.jpeg
    class/2
      img4.jpeg

Evaluation

To evaluate a pre-trained model on ImageNet val with a single GPU run:

python main.py --eval --resume <checkpoint> --model <model-name>--data-path <imagenet-path> 

For example, to evaluate the SPACH-Hybrid-MS-S model, run

python main.py --eval --resume --model spach_ms_s_patch4_224_hybrid spach_ms_hybrid_s.pth --data-path <imagenet-path>

giving

* [email protected] 83.658 [email protected] 96.762 loss 0.688

You can find all supported models in models/registry.py.

Training

One can simply call the following script to run training process. Distributed training is recommended even on single GPU node.

python -m torch.distributed.launch --nproc_per_node <num-of-gpus-to-use> --use_env main.py \
--model <model-name>
--data-path <imagenet-path>
--output_dir <output-path>
--dist-eval

Citation

@article{zhao2021battle,
  title={A Battle of Network Structures: An Empirical Study of CNN, Transformer, and MLP},
  author={Zhao, Yucheng and Wang, Guangting and Tang, Chuanxin and Luo, Chong and Zeng, Wenjun and Zha, Zheng-Jun},
  journal={arXiv preprint arXiv:2108.13002},
  year={2021}
}

@article{tang2021sparse,
  title={Sparse MLP for Image Recognition: Is Self-Attention Really Necessary?},
  author={Tang, Chuanxin and Zhao, Yucheng and Wang, Guangting and Luo, Chong and Xie, Wenxuan and Zeng, Wenjun},
  journal={arXiv preprint arXiv:2109.05422},
  year={2021}
}

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Acknowledgement

Our code are built on top of DeiT. We test throughput following Swin Transformer

You might also like...
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Measuring and Improving Consistency in Pretrained Language Models

ParaRel 🤘 This repository contains the code and data for the paper: Measuring and Improving Consistency in Pretrained Language Models as well as the

Reference implementation of code generation projects from Facebook AI Research. General toolkit to apply machine learning to code, from dataset creation to model training and evaluation. Comes with pretrained models.

This repository is a toolkit to do machine learning for programming languages. It implements tokenization, dataset preprocessing, model training and m

A library for finding knowledge neurons in pretrained transformer models.
A library for finding knowledge neurons in pretrained transformer models.

knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t

VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning
VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning

VisualGPT Our Paper VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning Main Architecture of Our VisualGPT Downloa

YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset

YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research int

Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Music Source Separation with Channel-wise Subband Phase Aware ResUnet (CWS-PResUNet) Introduction This repo contains the pretrained Music Source Separ

Base pretrained models and datasets in pytorch (MNIST, SVHN, CIFAR10, CIFAR100, STL10, AlexNet, VGG16, VGG19, ResNet, Inception, SqueezeNet)

This is a playground for pytorch beginners, which contains predefined models on popular dataset. Currently we support mnist, svhn cifar10, cifar100 st

Implementation of Squeezenet in pytorch, pretrained models on Cifar 10 data to come

Pytorch Squeeznet Pytorch implementation of Squeezenet model as described in https://arxiv.org/abs/1602.07360 on cifar-10 Data. The definition of Sque

Comments
  • Shift features implementation

    Shift features implementation

    Hi, very interesting research. I wonder why did you implement the shift_feature as memory copy https://github.com/microsoft/SPACH/blob/497c1d86fffd9d48e26c0484fb845ff04c328cca/models/shiftvit.py#L107 instead of using Tensor.roll operation? It would make your block much faster. Another benefit would be that pixels from one side would leak to the other giving the network to pass information from one boundary to another, which seems a better option that dublication of the last row during each shift.

    opened by bonlime 3
  • Add: unofficial implementation

    Add: unofficial implementation

    Hey folks,

    It would be great if this repository could also hold links for other unofficial implementations. I am proposing a keras tutorial on ShiftViT.

    opened by ariG23498 0
  • The configuration of the architecture variants is inconsistent with the papers and weights files.

    The configuration of the architecture variants is inconsistent with the papers and weights files.

    @tangchuanxin

    https://github.com/microsoft/SPACH/blob/497c1d86fffd9d48e26c0484fb845ff04c328cca/models/registry.py#L224

    The code is inconsistent with the content of the paper:

    image

    and the weight file. The content of this pth file is the same as the architecture variant -S in the figure above, ie, depths=(6, 8, 18, 6).

    https://github.com/microsoft/SPACH/releases/download/v1.0/shiftvit_tiny_r2.pth

    opened by lartpang 1
Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Data and code for the paper "Importance of Kernel Bandwidth in Quantum Machine Learning"

Reproducibility materials for "Importance of Kernel Bandwidth in Quantum Machine Learning" Repo structure: code contains Python scripts used to genera

Ruslan Shaydulin 3 Oct 23, 2022
The code of paper "Block Modeling-Guided Graph Convolutional Neural Networks".

Block Modeling-Guided Graph Convolutional Neural Networks This repository contains the demo code of the paper: Block Modeling-Guided Graph Convolution

22 Dec 08, 2022
CLIP2Video: Mastering Video-Text Retrieval via Image CLIP

CLIP2Video: Mastering Video-Text Retrieval via Image CLIP The implementation of paper CLIP2Video: Mastering Video-Text Retrieval via Image CLIP. CLIP2

168 Dec 29, 2022
This repository is an unoffical PyTorch implementation of Medical segmentation in 3D and 2D.

Pytorch Medical Segmentation Read Chinese Introduction:Here! Recent Updates 2021.1.8 The train and test codes are released. 2021.2.6 A bug in dice was

EasyCV-Ellis 618 Dec 27, 2022
Official PyTorch implementation of the paper "Deep Constrained Least Squares for Blind Image Super-Resolution", CVPR 2022.

Deep Constrained Least Squares for Blind Image Super-Resolution [Paper] This is the official implementation of 'Deep Constrained Least Squares for Bli

MEGVII Research 141 Dec 30, 2022
OpenMMLab Video Perception Toolbox. It supports Video Object Detection (VID), Multiple Object Tracking (MOT), Single Object Tracking (SOT), Video Instance Segmentation (VIS) with a unified framework.

English | 简体中文 Documentation: https://mmtracking.readthedocs.io/ Introduction MMTracking is an open source video perception toolbox based on PyTorch.

OpenMMLab 2.7k Jan 08, 2023
Machine Learning Model deployment for Container (TensorFlow Serving)

try_tf_serving ├───dataset │ ├───testing │ │ ├───paper │ │ ├───rock │ │ └───scissors │ └───training │ ├───paper │ ├───rock

Azhar Rizki Zulma 5 Jan 07, 2022
The Instructed Glacier Model (IGM)

The Instructed Glacier Model (IGM) Overview The Instructed Glacier Model (IGM) simulates the ice dynamics, surface mass balance, and its coupling thro

27 Dec 16, 2022
Repository for MuSiQue: Multi-hop Questions via Single-hop Question Composition

🎵 MuSiQue: Multi-hop Questions via Single-hop Question Composition This is the repository for our paper "MuSiQue: Multi-hop Questions via Single-hop

21 Jan 02, 2023
An implementation of the efficient attention module.

Efficient Attention An implementation of the efficient attention module. Description Efficient attention is an attention mechanism that substantially

Shen Zhuoran 194 Dec 15, 2022
[제 13회 투빅스 컨퍼런스] OK Mugle! - 장르부터 멜로디까지, Content-based Music Recommendation

Ok Mugle! 🎵 장르부터 멜로디까지, Content-based Music Recommendation 'Ok Mugle!'은 제13회 투빅스 컨퍼런스(2022.01.15)에서 진행한 음악 추천 프로젝트입니다. Description 📖 본 프로젝트에서는 Kakao

SeongBeomLEE 5 Oct 09, 2022
Code repo for "Towards Interpretable Deep Networks for Monocular Depth Estimation" paper.

InterpretableMDE A PyTorch implementation for "Towards Interpretable Deep Networks for Monocular Depth Estimation" paper. arXiv link: https://arxiv.or

Zunzhi You 16 Aug 12, 2022
Self-Supervised Methods for Noise-Removal

SSMNR | Self-Supervised Methods for Noise Removal Image denoising is the task of removing noise from an image, which can be formulated as the task of

1 Jan 16, 2022
Automated Hyperparameter Optimization Competition

QQ浏览器2021AI算法大赛 - 自动超参数优化竞赛 ACM CIKM 2021 AnalyticCup 在信息流推荐业务场景中普遍存在模型或策略效果依赖于“超参数”的问题,而“超参数"的设定往往依赖人工经验调参,不仅效率低下维护成本高,而且难以实现更优效果。因此,本次赛题以超参数优化为主题,从真

20 Dec 09, 2021
pytorch implementation of fast-neural-style

fast-neural-style 🌇 🚀 NOTICE: This codebase is no longer maintained, please use the codebase from pytorch examples repository available at pytorch/e

Abhishek Kadian 405 Dec 15, 2022
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 321 Dec 27, 2022
A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation

##A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation. #USAGE To run the trained classifier on some images: python w

Alex Seewald 13 Nov 17, 2022
FedGS: A Federated Group Synchronization Framework Implemented by LEAF-MX.

FedGS: Data Heterogeneity-Robust Federated Learning via Group Client Selection in Industrial IoT Preparation For instructions on generating data, plea

Lizonghang 9 Dec 22, 2022
TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification

TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification [NeurIPS 2021] Abstract Multiple instance learn

132 Dec 30, 2022
A ssl analyzer which could analyzer target domain's certificate.

ssl_analyzer A ssl analyzer which could analyzer target domain's certificate. Analyze the domain name ssl certificate information according to the inp

vincent 17 Dec 12, 2022