A library for implementing Decentralized Graph Neural Network algorithms.

Overview

decentralized-gnn

A package for implementing and simulating decentralized Graph Neural Network algorithms for classification of peer-to-peer nodes. Developed code supports the publication p2pGNN: A Decentralized Graph Neural Network for Node Classification in Peer-to-Peer Networks.

Quick Start

To generate a local instance of a decentralized learning device:

from decentralized.devices import GossipDevice
from decentralized.mergers import SlowMerge
from learning.nn import MLP
node = ... # a node identifier object (can be any object)
features = ... # feature vector, should have the same length for each device
labels = ... # one hot encoding of class labels, zeroes if no label is known
predictor = MLP(features.shape[0], labels.shape[0])  # or load a pretrained model with
device = GossipDevice(node, predictor, features, labels, gossip_merge=SlowMerge)

In this code, the type of the device (GossipDevice)and the variable merge protocol (SlowMerge) work together to define a decentralized learning seting for a Graph Neural Network that runs on and takes account of unstructured peer-to-peer links of uncertain availability.

Then, when possible (e.g. at worst, whenever devices send messages to the others for other reasons) perform the following information exchange scheme between linked devices u and v:

send = u.send()
receive = v.receive(u.name, send)
u.ack(v.name, receive)

🛠️ Simulations

Simulations on many devices automatically generated by existing datasets can be easily set up and run per the following code:

from decentralized.devices import GossipDevice
from decentralized.mergers import AvgMerge
from decentralized.simulation import create_network

dataset_name = ... # "cora", "citeseer" or "pubmed"
network, test_labels = create_network(dataset_name, 
                                      GossipDevice,
                                      pretrained=False,
                                      gossip_merge=AvgMerge,
                                      gossip_pull=False,
                                      seed=0)
for epoch in range(800):
    network.round()
    accuracy_base = sum(1. if network.devices[u].predict(False) == label else 0 for u, label in test_labels.items()) / len(test_labels)
    accuracy = sum(1. if network.devices[u].predict() == label else 0 for u, label in test_labels.items()) / len(test_labels)
    print(f"Epoch {epoch} \t Acc {accuracy:.3f} \t Base acc {accuracy_base:.3f}")

In the above code, datasets are automatically downloaded using DGL's interface. Then, devices are instantiated given desired setting preferences.

⚠️ Some merge schemes take up a lot of memory to simulate.

📓 Citation

TBD
Owner
Multimedia Knowledge and Social Analytics Lab
MKLab is part of the Information Technologies Institute.
Multimedia Knowledge and Social Analytics Lab
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch

PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari

342 Dec 02, 2022
Lux AI environment interface for RLlib multi-agents

Lux AI interface to RLlib MultiAgentsEnv For Lux AI Season 1 Kaggle competition. LuxAI repo RLlib-multiagents docs Kaggle environments repo Please let

Jaime 12 Nov 07, 2022
Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

TianYuan 27 Nov 07, 2022
Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering

Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering This repository provides the source code of "Consensus Learning

SeongKu-Kang 6 Apr 29, 2022
《Towards High Fidelity Face Relighting with Realistic Shadows》(CVPR 2021)

Towards High Fidelity Face-Relighting with Realistic Shadows Andrew Hou, Ze Zhang, Michel Sarkis, Ning Bi, Yiying Tong, Xiaoming Liu. In CVPR, 2021. T

114 Dec 10, 2022
MADE (Masked Autoencoder Density Estimation) implementation in PyTorch

pytorch-made This code is an implementation of "Masked AutoEncoder for Density Estimation" by Germain et al., 2015. The core idea is that you can turn

Andrej 498 Dec 30, 2022
A plug-and-play library for neural networks written in Python

A plug-and-play library for neural networks written in Python!

Dimos Michailidis 2 Jul 16, 2022
PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

1 May 31, 2022
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.

Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut

Bin Xiao 175 Jan 08, 2023
Open-sourcing the Slates Dataset for recommender systems research

FINN.no Recommender Systems Slate Dataset This repository accompany the paper "Dynamic Slate Recommendation with Gated Recurrent Units and Thompson Sa

FINN.no 48 Nov 28, 2022
Towards Interpretable Deep Metric Learning with Structural Matching

DIML Created by Wenliang Zhao*, Yongming Rao*, Ziyi Wang, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for paper Towards Interpr

Wenliang Zhao 75 Nov 11, 2022
Shape-Adaptive Selection and Measurement for Oriented Object Detection

Source Code of AAAI22-2171 Introduction The source code includes training and inference procedures for the proposed method of the paper submitted to t

houliping 24 Nov 29, 2022
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. The Anti-Backdoor Learning

Yige-Li 51 Dec 07, 2022
Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR 2022)

Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR2022)[paper] Authors: Chenhang He, Ruihuang Li, Shuai Li, L

Billy HE 141 Dec 30, 2022
BuildingNet: Learning to Label 3D Buildings

BuildingNet This is the implementation of the BuildingNet architecture described in this paper: Paper: BuildingNet: Learning to Label 3D Buildings Arx

16 Nov 07, 2022
[ICCV21] Self-Calibrating Neural Radiance Fields

Self-Calibrating Neural Radiance Fields, ICCV, 2021 Project Page | Paper | Video Author Information Yoonwoo Jeong [Google Scholar] Seokjun Ahn [Google

381 Dec 30, 2022
DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download

Bubbliiiing 31 Nov 25, 2022
A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising (CVPR 2020 Oral & TPAMI 2021)

ELD The implementation of CVPR 2020 (Oral) paper "A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising" and its journal (TPAMI) v

Kaixuan Wei 359 Jan 01, 2023
Spectrum Surveying: Active Radio Map Estimation with Autonomous UAVs

Spectrum Surveying: The Python code in this repository implements the simulations and plots the figures described in the paper “Spectrum Surveying: Ac

Universitetet i Agder 2 Dec 06, 2022
Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis.

ID-Unet: Iterative-view-synthesis(CVPR2021 Oral) Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis. Overvie

17 Aug 23, 2022