Image classification for projects and researches

Overview

Python 3.7 Python 3.8 MIT License Coverage

KERAS CLASSIFY

Image classification for projects and researches

About The Project

Image classification is a commonly used problem in the experimental part of scientific papers and also frequently appears as part of the projects. With the desire to reduce time and effort, Keras Classify was created.

Getting Started

Installation

  1. Clone the repo: https://github.com/nguyentruonglau/keras-classify.git

  2. Install packages

    > python -m venv 
         
          
    > activate.bat (in scripts folder)
    > pip install -r requirements.txt
    
         

Todo List:

  • Cosine learning rate scheduler
  • Gradient-based Localization
  • Sota models
  • Synthetic data
  • Smart Resize
  • Support Python 3.X and Tf 2.X
  • Use imagaug for augmentation data
  • Use prefetching and multiprocessing to training.
  • Analysis Of Input Shape
  • Compiled using XLA, auto-clustering on GPU
  • Receiver operating characteristic

Quick Start

Analysis Of Input Shape

If your data has random input_shape, you don't know which input_shape to choose, the analysis program is the right choice for you. The algorithm is applied to analyze: Kernel Density Estimation.

Convert Data

From tensorflow 2.3.x already support auto fit_generator, however moving the data to npy file will make it easier to manage. The algorithm is applied to shuffle data: Random Permutation. Read more here.

Run: python convert/convert_npy.py

Training Model.

Design your model at model/models.py, we have made EfficientNetB0 the default. Adjust the appropriate hyperparameters and run: python train.py

Evaluate Model.

  • Statistics number of images per class after suffle on test data.

  • Provide model evalution indicators such as: Accuracy, Precesion, Recall, F1-Score and AUC (Area Under the Curve).

  • Plot training history of Accuracy, Loss, Receiver Operating Characteristic curve and Confusion Matrix.

Explainable AI.

Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization. "We propose a technique for producing 'visual explanations' for decisions from a large class of CNN-based models, making them more transparent" Ramprasaath R. Selvaraju ... Read more here.

Example Code

Use for projects

from keras.preprocessing.image import load_img, img_to_array
from keras.preprocessing.image import smart_resize
from tensorflow.keras.models import load_model
import tensorflow as tf
import numpy as np

#load pretrained model
model_path = 'data/output/model/val_accuracy_max.h5'
model = load_model(model_path)

#load data
img_path = 'images/images.jpg'
img = load_img(img_path)
img = img_to_array(img)
img = smart_resize(img, (72,72)) #resize to HxW
img = np.expand_dims(img, axis=0)

#prediction
y_pred = model.predict(img)
y_pred = np.argmax(y_pred, axis=1)

#see convert/output/label_decode.json
print(y_pred)

Smart resize (tf < 2.4.1)

from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.preprocessing.image load_img
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import image_ops
import numpy as np

def smart_resize(img, new_size, interpolation='bilinear'):
    """Resize images to a target size without aspect ratio distortion.

    Arguments:
      img (3D array): image data
      new_size (tuple): HxW

    Returns:
      [3D array]: image after resize
    """
    # Get infor of the image
    height, width, _ = img.shape
    target_height, target_width = new_size

    crop_height = (width * target_height) // target_width
    crop_width = (height * target_width) // target_height

    # Set back to input height / width if crop_height / crop_width is not smaller.
    crop_height = np.min([height, crop_height])
    crop_width = np.min([width, crop_width])

    crop_box_hstart = (height - crop_height) // 2
    crop_box_wstart = (width - crop_width) // 2

    # Infor to resize image
    crop_box_start = array_ops.stack([crop_box_hstart, crop_box_wstart, 0])
    crop_box_size = array_ops.stack([crop_height, crop_width, -1])

    img = array_ops.slice(img, crop_box_start, crop_box_size)
    img = image_ops.resize_images_v2(
        images=img,
        size=new_size,
        method=interpolation)
    return img.numpy()

Contributor

  1. BS Nguyen Truong Lau ([email protected])
  2. PhD Thai Trung Hieu ([email protected])

License

Distributed under the MIT License. See LICENSE for more information.

You might also like...
An end-to-end PyTorch framework for image and video classification
An end-to-end PyTorch framework for image and video classification

What's New: March 2021: Added RegNetZ models November 2020: Vision Transformers now available, with training recipes! 2020-11-20: Classy Vision v0.5 R

Scripts for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation and a convolutional neural network (CNN) for image classification
Scripts for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation and a convolutional neural network (CNN) for image classification

About subwAI subwAI - a project for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation

PyTorch implementation of our method for adversarial attacks and defenses in hyperspectral image classification.
PyTorch implementation of our method for adversarial attacks and defenses in hyperspectral image classification.

Self-Attention Context Network for Hyperspectral Image Classification PyTorch implementation of our method for adversarial attacks and defenses in hyp

Code image classification of MNIST dataset using different architectures: simple linear NN, autoencoder, and highway network

Deep Learning for image classification pip install -r http://webia.lip6.fr/~baskiotisn/requirements-amal.txt Train an autoencoder python3 train_auto

A PyTorch Image-Classification With AlexNet And ResNet50.

PyTorch 图像分类 依赖库的下载与安装 在终端中执行 pip install -r -requirements.txt 完成项目依赖库的安装 使用方式 数据集的准备 STL10 数据集 下载:STL-10 Dataset 存储位置:将下载后的数据集中 train_X.bin,train_y.b

CNN Based Meta-Learning for Noisy Image Classification and Template Matching

CNN Based Meta-Learning for Noisy Image Classification and Template Matching Introduction This master thesis used a few-shot meta learning approach to

Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion

CSF Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion Tips: For testing: CUDA_VISIBLE_DEVICES=0 python main.py For trai

A python-image-classification web application project, written in Python and served through the Flask Microframework
A python-image-classification web application project, written in Python and served through the Flask Microframework

A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and Tensorflow wrappers, to make predictions on uploaded images.

All the essential resources and template code needed to understand and practice data structures and algorithms in python with few small projects to demonstrate their practical application.

Data Structures and Algorithms Python INDEX 1. Resources - Books Data Structures - Reema Thareja competitiveCoding Big-O Cheat Sheet DAA Syllabus Inte

Releases(v1.0.0)
Owner
Nguyễn Trường Lâu
AI Researcher at FPT Software
Nguyễn Trường Lâu
This is a Python wrapper for TA-LIB based on Cython instead of SWIG.

TA-Lib This is a Python wrapper for TA-LIB based on Cython instead of SWIG. From the homepage: TA-Lib is widely used by trading software developers re

John Benediktsson 7.3k Jan 03, 2023
A PyTorch implementation of "Semi-Supervised Graph Classification: A Hierarchical Graph Perspective" (WWW 2019)

SEAL ⠀⠀⠀ A PyTorch implementation of Semi-Supervised Graph Classification: A Hierarchical Graph Perspective (WWW 2019) Abstract Node classification an

Benedek Rozemberczki 202 Dec 27, 2022
Simple implementation of Mobile-Former on Pytorch

Simple-implementation-of-Mobile-Former At present, only the model but no trained. There may be some bug in the code, and some details may be different

Acheung 103 Dec 31, 2022
Code of paper "Compositionally Generalizable 3D Structure Prediction"

Compositionally Generalizable 3D Structure Prediction In this work, We bring in the concept of compositional generalizability and factorizes the 3D sh

Songfang Han 30 Dec 17, 2022
Official repository for the CVPR 2021 paper "Learning Feature Aggregation for Deep 3D Morphable Models"

Deep3DMM Official repository for the CVPR 2021 paper Learning Feature Aggregation for Deep 3D Morphable Models. Requirements This code is tested on Py

38 Dec 27, 2022
Detector for Log4Shell exploitation attempts

log4shell-detector Detector for Log4Shell exploitation attempts Idea The problem with the log4j CVE-2021-44228 exploitation is that the string can be

Florian Roth 729 Dec 25, 2022
MAg: a simple learning-based patient-level aggregation method for detecting microsatellite instability from whole-slide images

MAg Paper Abstract File structure Dataset prepare Data description How to use MAg? Why not try the MAg_lib! Trained models Experiment and results Some

Calvin Pang 3 Apr 08, 2022
Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

Gyeongjae Choi 17 Sep 23, 2021
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics

FusionNet_Pytorch FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics Requirements Pytorch 0.1.11 Pyt

Choi Gunho 102 Dec 13, 2022
[AAAI 2021] MVFNet: Multi-View Fusion Network for Efficient Video Recognition

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

Wenhao Wu 114 Nov 27, 2022
Weighted K Nearest Neighbors (kNN) algorithm implemented on python from scratch.

kNN_From_Scratch I implemented the k nearest neighbors (kNN) classification algorithm on python. This algorithm is used to predict the classes of new

1 Dec 14, 2021
Vehicle speed detection with python

Vehicle-speed-detection In the project simulate the tracker.py first then simulate the SpeedDetector.py. Finally, a new window pops up and the output

3 Dec 15, 2022
With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function

With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function. At the momen

ChemEngAI 40 Dec 27, 2022
Highway networks implemented in PyTorch.

PyTorch Highway Networks Highway networks implemented in PyTorch. Just the MNIST example from PyTorch hacked to work with Highway layers. Todo Make th

Conner Vercellino 56 Dec 14, 2022
Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US simulation

AutomaticUSnavigation Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US

Cesare Magnetti 6 Dec 05, 2022
High-performance moving least squares material point method (MLS-MPM) solver.

High-Performance MLS-MPM Solver with Cutting and Coupling (CPIC) (MIT License) A Moving Least Squares Material Point Method with Displacement Disconti

Yuanming Hu 2.2k Dec 31, 2022
PointCNN: Convolution On X-Transformed Points (NeurIPS 2018)

PointCNN: Convolution On X-Transformed Points Created by Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Introduction PointCNN

Yangyan Li 1.3k Dec 21, 2022
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 47 Sep 06, 2022
Winners of DrivenData's Overhead Geopose Challenge

Winners of DrivenData's Overhead Geopose Challenge

DrivenData 22 Aug 04, 2022