System Combination for Grammatical Error Correction Based on Integer Programming

Related tags

Deep Learninggec_ip
Overview

System Combination for Grammatical Error Correction Based on Integer Programming


This repository contains the code and scripts that implement the system combination approach for grammatical error correction in Lin and Ng (2021).

Reference

Ruixi Lin and Hwee Tou Ng (2021). System Combination for Grammatical Error Correction Based on Integer Programming.

Please cite:

@inproceedings{lin2021gecip,
  author    = "Lin, Ruixi and Ng, Hwee Tou",
  title     = "System Combination for Grammatical Error Correction Based on Integer Programming",
  booktitle = "Proceedings of Recent Advances in Natural Language Processing",
  year      = "2021",
  pages     = "829-834"
}

Table of contents

Prerequisites

Example

License

Prerequisites

conda create --name comb python=3.6
conda activate comb
pip install spacy
python -m spacy download en

For the nonlinear integer programming solver, we use

LINGO10.0

Note that educational institutions can obtain a free license to use the LINGO solver.

Example

Combine the 3 GEC systems listed in the paper using the IP approach. The three systems are UEdin-MS (https://aclanthology.org/W19-4427), Kakao (https://aclanthology.org/W19-4423), and Tohoku (https://aclanthology.org/D19-1119). The core functions for the IP objective are implemented in model.lg4. You can find model.lg4 under lingo/inputs.

  1. Run python prepare_data.py -dir . -list kakao uedinms tohoku to generate aggregated TP, FP, and FN counts. The counts files are stored under lingo/inputs.

  2. Load model.lg4 into the LINGO console and specify the input data path with the counts file path, select the INLP model, and run optimizations. Store the solutions to lingo/outputs/sol_kakao_uedinms_tohoku.txt.

  3. Run ./comb.sh . sol_kakao_uedinms_tohoku.txt to load LINGO solutions, merge and apply edits. The resulted blind test file can be found under submissions. It can be zipped and submitted to the BEA CodeLab website (https://competitions.codalab.org/competitions/20228) for evaluations.

The data folder provides individual GEC system output files, and .m2 files generated using ERRANT for the listed systems. For more information, please visit the ERRANT github page.

We include the IP combined .m2 files under merged_m2, and the corresponding text files under submissions.

License

The source code and models in this repository are licensed under the GNU General Public License v3.0 (see LICENSE). For further research interests and commercial use of the code and models, please contact Ruixi Lin ([email protected]) and Prof. Hwee Tou Ng ([email protected]).

Owner
NUS NLP Group
National University of Singapore
NUS NLP Group
All materials of Cassandra Event, Udyam'22

Cassandra 2022 Workspace Workshop Materials Workshop-1 Workshop-2 Workshop-3 Workshop-4 Assignments Assignment-1 Assignment-2 Assignment-3 Resources P

36 Dec 31, 2022
A Fast Knowledge Distillation Framework for Visual Recognition

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
PyTorch implementation of 1712.06087 "Zero-Shot" Super-Resolution using Deep Internal Learning

Unofficial PyTorch implementation of "Zero-Shot" Super-Resolution using Deep Internal Learning Unofficial Implementation of 1712.06087 "Zero-Shot" Sup

Jacob Gildenblat 196 Nov 27, 2022
A faster pytorch implementation of faster r-cnn

A Faster Pytorch Implementation of Faster R-CNN Write at the beginning [05/29/2020] This repo was initaited about two years ago, developed as the firs

Jianwei Yang 7.1k Jan 01, 2023
GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

22 Dec 12, 2022
Node Editor Plug for Blender

NodeEditor Blender的程序化建模插件 Show Current 基本框架:自定义的tree-node-socket、tree中的node与socket采用字典查询、基于socket入度的拓扑排序 数据传递和处理依靠Tree中的字典,socket传递字典key TODO 增加更多的节点

Cuimi 11 Dec 03, 2022
InsCLR: Improving Instance Retrieval with Self-Supervision

InsCLR: Improving Instance Retrieval with Self-Supervision This is an official PyTorch implementation of the InsCLR paper. Download Dataset Dataset Im

Zelu Deng 25 Aug 30, 2022
Setup and customize deep learning environment in seconds.

Deepo is a series of Docker images that allows you to quickly set up your deep learning research environment supports almost all commonly used deep le

Ming 6.3k Jan 06, 2023
[ICCV 2021] Code release for "Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks"

Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks By Yikai Wang, Yi Yang, Fuchun Sun, Anbang Yao. This is the pytorc

Yikai Wang 26 Nov 20, 2022
Implementation of the CVPR 2021 paper "Online Multiple Object Tracking with Cross-Task Synergy"

Online Multiple Object Tracking with Cross-Task Synergy This repository is the implementation of the CVPR 2021 paper "Online Multiple Object Tracking

54 Oct 15, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
PyTorch implementation for Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.

Stochastic CSLR This is the PyTorch implementation for the ECCV 2020 paper: Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuou

Zhe Niu 28 Dec 19, 2022
A crash course in six episodes for software developers who want to become machine learning practitioners.

Featured code sample tensorflow-planespotting Code from the Google Cloud NEXT 2018 session "Tensorflow, deep learning and modern convnets, without a P

Google Cloud Platform 2.6k Jan 08, 2023
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Official Paddle Implementation] [Huggingface Gradio Demo] [Unofficial

442 Dec 16, 2022
Transfer-Learn is an open-source and well-documented library for Transfer Learning.

Transfer-Learn is an open-source and well-documented library for Transfer Learning. It is based on pure PyTorch with high performance and friendly API. Our code is pythonic, and the design is consist

THUML @ Tsinghua University 2.2k Jan 03, 2023
Implementation of the master's thesis "Temporal copying and local hallucination for video inpainting".

Temporal copying and local hallucination for video inpainting This repository contains the implementation of my master's thesis "Temporal copying and

David Álvarez de la Torre 1 Dec 02, 2022
CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification (ICCV2021)

CM-NAS Official Pytorch code of paper CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification in ICCV2021. Vis

JDAI-CV 40 Nov 25, 2022
Experiments for Operating Systems Lab (ETCS-352)

Operating Systems Lab (ETCS-352) Experiments for Operating Systems Lab (ETCS-352) performed by me in 2021 at uni. All codes are written by me except t

Deekshant Wadhwa 0 Sep 06, 2022
Setup freqtrade/freqUI on Heroku

UNMAINTAINED - REPO MOVED TO https://github.com/p-zombie/freqtrade Creating the app git clone https://github.com/joaorafaelm/freqtrade.git && cd freqt

João 51 Aug 29, 2022
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023