Implementation of the CVPR 2021 paper "Online Multiple Object Tracking with Cross-Task Synergy"

Related tags

Deep LearningTADAM
Overview

Online Multiple Object Tracking with Cross-Task Synergy

This repository is the implementation of the CVPR 2021 paper "Online Multiple Object Tracking with Cross-Task Synergy" Structure of TADAM

Installation

Tested on python=3.8 with torch=1.8.1 and torchvision=0.9.1.

It should also be compatible with python>=3.6, torch>=1.4.0 and torchvision>=0.4.0. Not tested on lower versions.

1. Clone the repository

git clone https://github.com/songguocode/TADAM.git

2. Create conda env and activate

conda create -n TADAM python=3.8
conda activate TADAM

3. Install required packages

pip install torch torchvision scipy opencv-python yacs

All models are set to run on GPU, thus make sure graphics card driver is properly installed, as well as CUDA.

To check if torch is running with CUDA, run in python:

import torch
torch.cuda.is_available()

It is working if True is returned.

See PyTorch Official Site if torch is not installed or working properly.

4. Clone MOTChallenge benchmark evaluation code

git clone https://github.com/JonathonLuiten/TrackEval.git

By now there should be two folders, TADAM and TrackEval.

Refer to MOTChallenge-Official for instructions.

Download the provided data.zip, unzip as folder data and copy inside TrackEval as TrackEva/data.

Move into TADAM folder

cd TADAM

5. Prepare MOTChallenge data

Download MOT16, MOT17, MOT17Det, and MOT20 and place them inside a datasets folder.

Two options to provide datasets location for training/testing:

  • a. Add a symbolic link inside TADAM folder by ln -s path_of_datasets datasets
  • b. In TADAM/configs/config.py, assign __C.PATHS.DATASET_ROOT with path_of_datasets

6. Download Models

The training base of TADAM is a detector pretrained on COCO. The base model coco_checkpoint.pth is provided in Google Drive

Trained models are also provided for reference:

  • TADAM_MOT16.pth
  • TADAM_MOT17.pth
  • TADAM_MOT20.pth

Create a folder output/models and place all models inside.

Train

  1. Training on single GPU, for MOT17 as an example
python -m lib.training.train TADAM_MOT17 --config TADAM_MOT17

First TADAM_MOT17 specifies the output name of the trained model, which can be changed as preferred.

Second TADAM_MOT17 refers to the config file lib/configs/TADAM_MOT17.yaml that loads training parameters. Switch config for respective dataset training. Config files are located in lib/configs.

  1. Training on multiple GPU with Distributed Data Parallel
OMP_NUM_THREADS=1 python -m torch.distributed.launch --nproc_per_node=2 --use_env -m lib.training.train TADAM_MOT17 --config TADAM_MOT17

Argument --nproc_per_node=2 specifies how many GPUs to be used for training. Here 2 cards are used.

Trained model will be stored inside output/models with the specified output name

Evaluate

python -m lib.tracking.test_tracker --result-name xxx --config TADAM_MOT17 --evaluation

Change xxx to prefered result name. --evaluation toggles on evaluation right after obtaining tracking results. Remove it if only running for results without evaluation. Evaluation requires all sequences results of the specified dataset.

Either run evaluation after training, or download and test the provided trained models.

Note that if output name of the trained model is changed, it must be specified in corresponding .yaml config file's line, i.e. replace value in MODEL: TADAM_MOT17.pth with expected model file name.

Code from TrackEval is used for evaluation, and it is set to run on multiple cores (8 cores) by default.

To run an evaluation after obtaining tracking results (with sequences result files), run:

python -m lib.utils.official_benchmark --result-name xxx --config TADAM_MOT17

Replace xxx with the result name, and choose config accordingly.

Tracking results can be found in output/results under respective dataset name folders. Detailed result is stored in a xxx_detailed.csv file, while the summary is given in a xxx_summary.txt file.

Results for reference

The evaluation results on train sets are given here for reference. See paper for reported test sets results.

  • MOT16
MOTA	MOTP	MODA	CLR_Re	CLR_Pr	MTR	PTR	MLR	CLR_TP	CLR_FN
63.7	91.6	63.9	64.5	99.0	35.6	40.8	23.6	71242	39165
CLR_FP	IDSW	MT	PT	ML	Frag	sMOTA	IDF1	IDR	IDP
689	186	184	211	122	316	58.3	68.0	56.2	86.2
IDTP	IDFN	IDFP	Dets	GT_Dets	IDs	GT_IDs
62013	48394	9918	71931	110407	446	517
  • MOT17
MOTA	MOTP	MODA	CLR_Re	CLR_Pr	MTR	PTR	MLR	CLR_TP	CLR_FN
68.0	91.3	68.2	69.0	98.8	43.5	37.5	19.0	232600	104291
CLR_FP	IDSW	MT	PT	ML	Frag	sMOTA	IDF1	IDR	IDP
2845	742	712	615	311	1182	62.0	71.6	60.8	87.0
IDTP	IDFN	IDFP	Dets	GT_Dets	IDs	GT_IDs
204819	132072	30626	235445	336891	1455	1638
  • MOT20
MOTA	MOTP	MODA	CLR_Re	CLR_Pr	MTR	PTR	MLR	CLR_TP	CLR_FN
80.2	87.0	80.4	82.2	97.9	64.0	28.8	7.18	932899	201715
CLR_FP	IDSW	MT	PT	ML	Frag	sMOTA	IDF1	IDR	IDP
20355	2275	1418	638	159	2737	69.5	72.3	66.5	79.2
IDTP	IDFN	IDFP	Dets	GT_Dets	IDs	GT_IDs
754621	379993	198633	953254	1134614	2953	2215

Results could differ slightly, and small variations should be acceptable.

Visualization

A visualization tool is provided to preview datasets' ground-truths, provided detections, and generated tracking results.

python -m lib.utils.visualization --config TADAM_MOT17 --which-set train --sequence 02 --public-detection FRCNN --result xxx --start-frame 1 --scale 0.8

Specify config files, train/test split, and sequence with --config, --which-set, --sequence respectively. --public-detection should only be specified for MOT17.

Replace --result xxx with the tracking results --start-frame 1 means viewing from frame 1, while --scale 0.8 resizes viewing window with given ratio.

Commands in visualization window:

  • "<": previous frame
  • ">": next frame
  • "t": toggle between viewing ground_truths, provided detections, and tracking results
  • "s": save current frame with all rendered elements
  • "h": hide frame information on window's top-left corner
  • "i": hide identity index on bounding boxes' top-left corner
  • "Esc" or "q": exit program

Pretrain detector on COCO

Basic detector is pretrained on COCO dataset, before training on MOT. A Faster-RCNN FPN with ResNet101 backbone is adopted in this code, which can be replaced by other similar detectors with code modifications.

Refer to Object detection reference training scripts on how to train a PyTorch-based detector.

See Tracking without bells and whistles for a jupyter notebook hands-on, which is also based on the aforementioned reference codes.

Publication

If you use the code in your research, please cite:

@InProceedings{TADAM_2021_CVPR,
    author = {Guo, Song and Wang, Jingya and Wang, Xinchao and Tao, Dacheng},
    title = {Online Multiple Object Tracking With Cross-Task Synergy},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month = {June},
    year = {2021},
}
KDD CUP 2020 Automatic Graph Representation Learning: 1st Place Solution

KDD CUP 2020: AutoGraph Team: aister Members: Jianqiang Huang, Xingyuan Tang, Mingjian Chen, Jin Xu, Bohang Zheng, Yi Qi, Ke Hu, Jun Lei Team Introduc

96 May 30, 2022
Learning Generative Models of Textured 3D Meshes from Real-World Images, ICCV 2021

Learning Generative Models of Textured 3D Meshes from Real-World Images This is the reference implementation of "Learning Generative Models of Texture

Dario Pavllo 115 Jan 07, 2023
Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes, ICCV 2017

AdaptationSeg This is the Python reference implementation of AdaptionSeg proposed in "Curriculum Domain Adaptation for Semantic Segmentation of Urban

Yang Zhang 128 Oct 19, 2022
Minimal deep learning library written from scratch in Python, using NumPy/CuPy.

SmallPebble Project status: experimental, unstable. SmallPebble is a minimal/toy automatic differentiation/deep learning library written from scratch

Sidney Radcliffe 92 Dec 30, 2022
GestureSSD CBAM - A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js

GestureSSD_CBAM A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js SSD implementation is based on https://github

xue_senhua1999 2 Jan 06, 2022
Navigating StyleGAN2 w latent space using CLIP

Navigating StyleGAN2 w latent space using CLIP an attempt to build sth with the official SG2-ADA Pytorch impl kinda inspired by Generating Images from

Mike K. 55 Dec 06, 2022
Unified tracking framework with a single appearance model

Paper: Do different tracking tasks require different appearance model? [ArXiv] (comming soon) [Project Page] (comming soon) UniTrack is a simple and U

ZhongdaoWang 300 Dec 24, 2022
CTF challenges and write-ups for MicroCTF 2021.

MicroCTF 2021 Qualifications About This repository contains CTF challenges and official write-ups for MicroCTF 2021 Qualifications. License Distribute

Shellmates 12 Dec 27, 2022
Your interactive network visualizing dashboard

Your interactive network visualizing dashboard Documentation: Here What is Jaal Jaal is a python based interactive network visualizing tool built usin

Mohit 177 Jan 04, 2023
QueryDet: Cascaded Sparse Query for Accelerating High-Resolution SmallObject Detection

QueryDet-PyTorch This repository is the official implementation of our paper: QueryDet: Cascaded Sparse Query for Accelerating High-Resolution Small O

Chenhongyi Yang 276 Dec 31, 2022
SimulLR - PyTorch Implementation of SimulLR

PyTorch Implementation of SimulLR There is an interesting work[1] about simultan

11 Dec 22, 2022
coldcuts is an R package to automatically generate and plot segmentation drawings in R

coldcuts coldcuts is an R package that allows you to draw and plot automatically segmentations from 3D voxel arrays. The name is inspired by one of It

2 Sep 03, 2022
Implementation of Bottleneck Transformer in Pytorch

Bottleneck Transformer - Pytorch Implementation of Bottleneck Transformer, SotA visual recognition model with convolution + attention that outperforms

Phil Wang 621 Jan 06, 2023
SpiroMask: Measuring Lung Function Using Consumer-Grade Masks

SpiroMask: Measuring Lung Function Using Consumer-Grade Masks Anonymised repository for paper submitted for peer review at ACM HEALTH (October 2021).

0 May 10, 2022
Unofficial implementation (replicates paper results!) of MINER: Multiscale Implicit Neural Representations in pytorch-lightning

MINER_pl Unofficial implementation of MINER: Multiscale Implicit Neural Representations in pytorch-lightning. 📖 Ref readings Laplacian pyramid explan

AI葵 51 Nov 28, 2022
Generic U-Net Tensorflow implementation for image segmentation

Tensorflow Unet Warning This project is discontinued in favour of a Tensorflow 2 compatible reimplementation of this project found under https://githu

Joel Akeret 1.8k Dec 10, 2022
PyTorch-Geometric Implementation of MarkovGNN: Graph Neural Networks on Markov Diffusion

MarkovGNN This is the official PyTorch-Geometric implementation of MarkovGNN paper under the title "MarkovGNN: Graph Neural Networks on Markov Diffusi

HipGraph: High-Performance Graph Analytics and Learning 6 Sep 23, 2022
Consistency Regularization for Adversarial Robustness

Consistency Regularization for Adversarial Robustness Official PyTorch implementation of Consistency Regularization for Adversarial Robustness by Jiho

40 Dec 17, 2022
SuRE Evaluation: A Supplementary Material

SuRE Evaluation: A Supplementary Material This repository contains supplementary material regarding the evaluations presented in the paper Visual Expl

NYU Visualization Lab 0 Dec 14, 2021
An Unsupervised Graph-based Toolbox for Fraud Detection

An Unsupervised Graph-based Toolbox for Fraud Detection Introduction: UGFraud is an unsupervised graph-based fraud detection toolbox that integrates s

SafeGraph 99 Dec 11, 2022