Official PyTorch implementation of the paper "TEMOS: Generating diverse human motions from textual descriptions"

Overview

TEMOS: TExt to MOtionS

Generating diverse human motions from textual descriptions

Description

Official PyTorch implementation of the paper "TEMOS: Generating diverse human motions from textual descriptions".

Please visit our webpage for more details.

teaser_lightteaser_dark

Bibtex

If you find this code useful in your research, please cite:

@article{petrovich22temos,
  title     = {{TEMOS}: Generating diverse human motions from textual descriptions},
  author    = {Petrovich, Mathis and Black, Michael J. and Varol, G{\"u}l},
  journal   = {arXiv},
  month     = {April},
  year      = {2022}
}

You can also put a star , if the code is useful to you.

Installation 👷

1. Create conda environment

conda create python=3.9 --name temos
conda activate temos

Install PyTorch 1.10 inside the conda environnement, and install the following packages:

pip install pytorch_lightning --upgrade
pip install torchmetrics==0.7
pip install hydra-core --upgrade
pip install hydra_colorlog --upgrade
pip install shortuuid
pip install tqdm
pip install pandas
pip install transformers
pip install psutil
pip install einops

The code was tested on Python 3.9.7 and PyTorch 1.10.0.

2. Download the datasets

KIT Motion-Language dataset

Be sure to read and follow their license agreements, and cite accordingly.

Use the code from Ghosh et al. or JL2P to download and prepare the kit dataset (extraction of xyz joints coodinates data from axis-angle Master Motor Map). Move or copy all the files which ends with "_meta.json", "_annotations.json" and "_fke.csv" inside the datasets/kit folder. "

AMASS dataset

WIP: instructions to be released soon

3. Download text model dependencies

Download distilbert from Hugging Face

cd deps/
git lfs install
git clone https://huggingface.co/distilbert-base-uncased
cd ..

4. SMPL body model

WIP: instructions to be released soon

5. (Optional) Donwload pre-trained models

WIP: instructions to be released soon

How to train TEMOS 🚀

The command to launch a training experiment is the folowing:

python train.py [OPTIONS]

The parsing is done by using the powerful Hydra library. You can override anything in the configuration by passing arguments like foo=value or foo.bar=value.

Experiment path

Each training will create a unique output directory (referred to as FOLDER below), where logs, configuations and checkpoints are stored.

By default it is defined as outputs/${data.dataname}/${experiment}/${run_id} with data.dataname the name of the dataset (see examples below), experiment=baseline and run_id a 8 unique random alpha-numeric identifier for the run (everything can be overridden if needed).

This folder is printed during logging, it should look like outputs/kit-mmm-xyz/baseline/3gn7h7v6/.

Some optional parameters

Datasets

  • data=kit-mmm-xyz: KIT-ML motions processed by the MMM framework (as in the original data) loaded as xyz joint coordinates (after axis-angle transformation → xyz) (by default)
  • data=kit-amass-rot: KIT-ML motions loaded as SMPL rotations and translations, from AMASS (processed with MoSh++)
  • data=kit-amass-xyz: KIT-ML motions loaded as xyz joint coordinates, from AMASS (processed with MoSh++) after passing through a SMPL layer and regressing the correct joints.

Training

  • trainer=gpu: training with CUDA, on an automatically selected GPU (default)
  • trainer=cpu: training on the CPU

How to generate motions with TEMOS

Dataset splits

To get results comparable to previous work, we use the same splits as in Language2Pose and Ghosh et al.. To be explicit, and not rely on random seeds, you can find the list of id-files in datasets/kit-splits/ (train/val/test).

When sampling Ghosh et al.'s motions with their code, I noticed that their dataloader is missing some sequences (see the discussion here). In order to compare all the methods with the same test set, we use the 520 sequences produced by Ghosh et al. code for the test set (instead of the 587 sequences). This split is refered as gtest (for "Ghosh test"). It is used per default in the sampling/evaluation/rendering code. You can change this set by specifying split=SPLIT in each command line.

You can also find in datasets/kit-splits/, the split used for the human-study (human-study) and the split used for the visuals of the paper (visu).

Sampling/generating motions

The command line to sample one motion per sequence is the following:

python sample.py folder=FOLDER [OPTIONS]

This command will create the folder FOLDER/samples/SPLIT and save the motions in the npy format.

Some optional parameters

  • mean=false: Take the mean value for the latent vector, instead of sampling (default is false)
  • number_of_samples=X: Generate X motions (by default it generates only one)
  • fact=X: Multiplies sigma by X during sampling (1.0 by default, diversity can be increased when fact>1)

Model trained on SMPL rotations

If your model has been trained with data=kit-amass-rot, it produces SMPL rotations and translations. In this case, you can specify the type of data you want to save after passing through the SMPL layer.

  • jointstype=mmm: Generate xyz joints compatible with the MMM bodies (by default). This gives skeletons comparable to data=kit-mmm-xyz (needed for evaluation).
  • jointstype=vertices: Generate human body meshes (needed for rendering).

Evaluating TEMOS (and prior works)

To evaluate TEMOS on the metrics defined in the paper, you must generate motions first (see above), and then run:

python evaluate.py folder=FOLDER [OPTIONS]

This will compute and store the metrics in the file FOLDER/samples/metrics_SPLIT in a yaml format.

Some optional parameters

Same parameters as in sample.py, it will choose the right directories for you. In the case of evaluating with number_of_samples>1, the script will compute two metrics metrics_gtest_multi_avg (the average of single metrics) and metrics_gtest_multi_best (chosing the best output for each motion). Please check the paper for more details.

Model trained on SMPL rotations

Currently, evaluation is only implemented on skeletons with MMM format. You must therefore use jointstype=mmm during sampling.

Evaluating prior works

WIP: the proper instructions and code will be available soon.

To give an overview:

  1. Generate motions with their code (it is still in the rifke feature space)
  2. Save them in xyz format (I "hack" their render script, to save them in xyz npy format instead of rendering)
  3. Load them into the evaluation code (instead of loading TEMOS motions).

Rendering motions

To get the visuals of the paper, I use Blender 2.93. The setup is not trivial (installation + running), I do my best to explain the process but don't hesitate to tell me if you have a problem.

Instalation

The goal is to be able to install blender so that it can be used with python scripts (so we can use ``import bpy''). There seem to be many different ways to do this, I will explain the one I use and understand (feel free to use other methods or suggest an easier way). The installation of Blender will be done as a standalone package. To use my scripts, we will run blender in the background, and the python executable in blender will run the script.

In any case, after the installation, please do step 5. to install the dependencies in the python environment.

  1. Please follow the instructions to install blender 2.93 on your operating system. Please install exactly this version.
  2. Locate the blender executable if it is not in your path. For the following commands, please replace blender with the path to your executable (or create a symbolic link or use an alias).
    • On Linux, it could be in /usr/bin/blender (already in your path).
    • On macOS, it could be in /Applications/Blender.app/Contents/MacOS/Blender (not in your path)
  3. Check that the correct version is installed:
    • blender --background --version should return "Blender 2.93.X".
    • blender --background --python-expr "import sys; print('\nThe version of python is '+sys.version.split(' ')[0])" should return "3.9.X".
  4. Locate the python installation used by blender the following line. I will refer to this path as path/to/blender/python.
blender --background --python-expr "import sys; import os; print('\nThe path to the installation of python of blender can be:'); print('\n'.join(['- '+x for x in sys.path if 'python' in (file:=os.path.split(x)[-1]) and not file.endswith('.zip')]))"
  1. Install these packages in the python environnement of blender:
path/to/blender/python -m pip install --user numpy
path/to/blender/python -m pip install --user matplotlib
path/to/blender/python -m pip install --user hydra-core --upgrade
path/to/blender/python -m pip install --user hydra_colorlog --upgrade
path/to/blender/python -m pip install --user moviepy
path/to/blender/python -m pip install --user shortuuid

Launch a python script (with arguments) with blender

Now that blender is installed, if we want to run the script script.py with the blender API (the bpy module), we can use:

blender --background --python script.py

If you need to add additional arguments, this will probably fail (as blender will interpret the arguments). Please use the double dash -- to tell blender to ignore the rest of the command. I then only parse the last part of the command (check temos/launch/blender.py if you are interested).

Rendering one sample

To render only one motion, please use this command line:

blender --background --python render.py -- npy=PATH_TO_DATA.npy [OPTIONS]

Rendering all the data

Please use this command line to render all the data of a split (which have to be already generated with sample.py). I suggest to use split=visu to render only a small subset.

blender --background --python render.py -- folder=FOLDER [OPTIONS]

SMPL bodies

Don't forget to generate the data with the option jointstype=vertices before. The renderer will automatically detect whether the movement is a sequence of joints or meshes.

Some optional parameters

  • downsample=true: Render only 1 frame every 8 frames, to speed up rendering (by default)
  • canonicalize=true: Make sure the first pose is oriented canonically (by translating and rotating the entire sequence) (by default)
  • mode=XXX: Choose the rendering mode (default is mode=sequence)
    • video: Render all the frames and generate a video (as in the supplementary video)
    • sequence: Render a single frame, with num=8 bodies (sampled equally, as in the figures of the paper)
    • frame: Render a single frame, at a specific point in time (exact_frame=0.5, generates the frame at about 50% of the video)
  • quality=false: Render to a higher resolution and denoise the output (default to false to speed up))

License

This code is distributed under an MIT LICENSE.

Note that our code depends on other libraries, including SMPL, SMPL-X, PyTorch3D, Hugging Face, Hydra, and uses datasets which each have their own respective licenses that must also be followed.

Owner
Mathis Petrovich
PhD student mainly interested in Human Body Shape Analysis, Computer Vision and Optimal Transport.
Mathis Petrovich
Gradient Inversion with Generative Image Prior

Gradient Inversion with Generative Image Prior This repository is an implementation of "Gradient Inversion with Generative Image Prior", accepted to N

MLLab @ Postech 25 Jan 09, 2023
Learning Time-Critical Responses for Interactive Character Control

Learning Time-Critical Responses for Interactive Character Control Abstract This code implements the paper Learning Time-Critical Responses for Intera

Movement Research Lab 227 Dec 31, 2022
Free course that takes you from zero to Reinforcement Learning PRO 🦸🏻‍🦸🏽

The Hands-on Reinforcement Learning course 🚀 From zero to HERO 🦸🏻‍🦸🏽 Out of intense complexities, intense simplicities emerge. -- Winston Churchi

Pau Labarta Bajo 260 Dec 28, 2022
ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information

ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information This repository contains code, model, dataset for ChineseBERT at ACL2021. Ch

413 Dec 01, 2022
Codes for NeurIPS 2021 paper "Adversarial Neuron Pruning Purifies Backdoored Deep Models"

Adversarial Neuron Pruning Purifies Backdoored Deep Models Code for NeurIPS 2021 "Adversarial Neuron Pruning Purifies Backdoored Deep Models" by Dongx

Dongxian Wu 31 Dec 11, 2022
This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales

Intro This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales Vehicle Sam

39 Jul 21, 2022
Use deep learning, genetic programming and other methods to predict stock and market movements

StockPredictions Use classic tricks, neural networks, deep learning, genetic programming and other methods to predict stock and market movements. Both

Linda MacPhee-Cobb 386 Jan 03, 2023
This repository contains the implementation of the paper: "Towards Frequency-Based Explanation for Robust CNN"

RobustFreqCNN About This repository contains the implementation of the paper "Towards Frequency-Based Explanation for Robust CNN" arxiv. It primarly d

Sarosij Bose 2 Jan 23, 2022
we propose a novel deep network, named feature aggregation and refinement network (FARNet), for the automatic detection of anatomical landmarks.

Feature Aggregation and Refinement Network for 2D Anatomical Landmark Detection Overview Localization of anatomical landmarks is essential for clinica

aoyueyuan 0 Aug 28, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Dec 30, 2022
Official implementation of the paper DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows

DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows Official implementation of the paper DeFlow: Learning Complex Im

Valentin Wolf 86 Nov 16, 2022
Official pytorch implementation of DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces

DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces Minhyuk Sung*, Zhenyu Jiang*, Panos Achlioptas, Niloy J. Mitra, Leonidas

Zhenyu Jiang 21 Aug 30, 2022
Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation

SSWS-loss_function_based_on_MS-TCN Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation Supervised Sliding Window

3 Aug 03, 2022
IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation

IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation Independent Encoder for Deep

30 Nov 05, 2022
Official code for Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018)

MUC Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018) Performance Details for Accuracy: | Dataset

Yijun Su 3 Oct 09, 2022
harmonic-percussive-residual separation algorithm wrapped as a VST3 plugin (iPlug2)

Harmonic-percussive-residual separation plug-in This work is a study on the plausibility of a sines-transients-noise decomposition inspired algorithm

Derp Learning 9 Sep 01, 2022
This repository contain code on Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems.

This repository contain code on Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems. The main directory include the code

0 Dec 23, 2021
"Graph Neural Controlled Differential Equations for Traffic Forecasting", AAAI 2022

Graph Neural Controlled Differential Equations for Traffic Forecasting Setup Python environment for STG-NCDE Install python environment $ conda env cr

Jeongwhan Choi 55 Dec 28, 2022
Deep Learning Models for Causal Inference

Extensive tutorials for learning how to build deep learning models for causal inference using selection on observables in Tensorflow 2.

Bernard J Koch 151 Dec 31, 2022
Syllabus del curso IIC2115 - Programación como Herramienta para la Ingeniería 2022/I

IIC2115 - Programación como Herramienta para la Ingeniería Videos y tutoriales Tutorial CMD Tutorial Instalación Python y Jupyter Tutorial de git-GitH

21 Nov 09, 2022