Collection of Docker images for ML/DL and video processing projects

Overview

dokai-logo

Build and push Generic badge

Collection of Docker images for ML/DL and video processing projects.

Overview of images

Three types of images differ by tag postfix:

  • base: Python with ML and CV packages, CUDA (11.4.2), cuDNN (8.2.4), FFmpeg (4.4) with NVENC support
  • pytorch: PyTorch (1.10.0-rc1), torchvision (0.10.1), torchaudio (0.9.1) and torch based libraries
  • tensor-stream: Tensor Stream for real-time video streams decoding on GPU

Example

Pull an image

docker pull ghcr.io/osai-ai/dokai:21.09-pytorch

Docker Hub mirror

docker pull osaiai/dokai:21.09-pytorch

Check available GPUs inside container

docker run --rm \
    --gpus=all \
    ghcr.io/osai-ai/dokai:21.09-pytorch \
    nvidia-smi

Example of using dokai image for DL pipeline you can find here.

Versions

base

dokai:20.09-base

ghcr.io/osai-ai/dokai:20.09-base

FFmpeg (release/4.3), nv-codec-headers (sdk/9.1)
Python (3.6.9)

pip==20.2.3
setuptools==50.3.0
packaging==20.4
numpy==1.19.2
opencv-python==4.4.0.42
scipy==1.5.2
matplotlib==3.3.2
pandas==1.1.2
notebook==6.1.4
scikit-learn==0.23.2
scikit-image==0.17.2
albumentations==0.4.6
Cython==0.29.21
Pillow==7.2.0
trafaret-config==2.0.2
pyzmq==19.0.2
librosa==0.8.0
psutil==5.7.2
dataclasses==0.7

dokai:20.10-base

ghcr.io/osai-ai/dokai:20.10-base

FFmpeg (release/4.3), nv-codec-headers (sdk/9.1)
Python (3.6.9)

pip==20.2.4
setuptools==50.3.2
packaging==20.4
numpy==1.19.2
opencv-python==4.4.0.44
scipy==1.5.3
matplotlib==3.3.2
pandas==1.1.3
notebook==6.1.4
scikit-learn==0.23.2
scikit-image==0.17.2
albumentations==0.5.0
Cython==0.29.21
Pillow==8.0.0
trafaret-config==2.0.2
pyzmq==19.0.2
librosa==0.8.0
psutil==5.7.2
dataclasses==0.7
pydantic==1.6.1
requests==2.24.0

dokai:20.12-base

ghcr.io/osai-ai/dokai:20.12-base

CUDA (11.1), cuDNN (8.0.5)
FFmpeg (release/4.3), nv-codec-headers (sdk/9.1)
Python (3.8.5)

pip==20.3.3
setuptools==51.0.0
packaging==20.8
numpy==1.19.4
opencv-python==4.4.0.46
scipy==1.5.4
matplotlib==3.3.3
pandas==1.1.5
notebook==6.1.5
scikit-learn==0.23.2
scikit-image==0.18.0
albumentations==0.5.2
Cython==0.29.21
Pillow==8.0.1
trafaret-config==2.0.2
pyzmq==20.0.0
librosa==0.8.0
psutil==5.8.0
pydantic==1.7.3
requests==2.25.1

dokai:21.01-base

ghcr.io/osai-ai/dokai:21.01-base

CUDA (11.1.1), cuDNN (8.0.5)
FFmpeg (release/4.3), nv-codec-headers (sdk/10.0)
Python (3.8.5)

pip==20.3.3
setuptools==51.3.3
packaging==20.8
numpy==1.19.5
opencv-python==4.5.1.48
scipy==1.6.0
matplotlib==3.3.3
pandas==1.2.0
notebook==6.2.0
scikit-learn==0.24.1
scikit-image==0.18.1
albumentations==0.5.2
Cython==0.29.21
Pillow==8.1.0
trafaret-config==2.0.2
pyzmq==21.0.1
librosa==0.8.0
psutil==5.8.0
pydantic==1.7.3
requests==2.25.1

dokai:21.02-base

ghcr.io/osai-ai/dokai:21.02-base

CUDA (11.2.1), cuDNN (8.1.0)
FFmpeg (release/4.3), nv-codec-headers (sdk/10.0)
Python (3.8.5)

pip==21.0.1
setuptools==53.0.0
packaging==20.9
numpy==1.20.1
opencv-python==4.5.1.48
scipy==1.6.1
matplotlib==3.3.4
pandas==1.2.2
scikit-learn==0.24.1
scikit-image==0.18.1
Pillow==8.1.0
librosa==0.8.0
albumentations==0.5.2
pyzmq==22.0.3
Cython==0.29.22
numba==0.52.0
requests==2.25.1
psutil==5.8.0
trafaret-config==2.0.2
pydantic==1.7.3
PyYAML==5.4.1
notebook==6.2.0
ipywidgets==7.6.3
tqdm==4.57.0
pytest==6.2.2
mypy==0.812
flake8==3.8.4

dokai:21.03-base

ghcr.io/osai-ai/dokai:21.03-base

CUDA (11.2.2), cuDNN (8.1.1)
FFmpeg (release/4.4), nv-codec-headers (sdk/10.0)
Python (3.8.5)

pip==21.0.1
setuptools==54.2.0
packaging==20.9
numpy==1.20.1
opencv-python==4.5.1.48
scipy==1.6.1
matplotlib==3.3.4
pandas==1.2.3
scikit-learn==0.24.1
scikit-image==0.18.1
Pillow==8.1.2
librosa==0.8.0
albumentations==0.5.2
pyzmq==22.0.3
Cython==0.29.22
numba==0.53.0
requests==2.25.1
psutil==5.8.0
trafaret-config==2.0.2
pydantic==1.8.1
PyYAML==5.4.1
notebook==6.3.0
ipywidgets==7.6.3
tqdm==4.59.0
pytest==6.2.2
mypy==0.812
flake8==3.9.0

dokai:21.05-base

ghcr.io/osai-ai/dokai:21.05-base

CUDA (11.3), cuDNN (8.2.0)
FFmpeg (release/4.4), nv-codec-headers (sdk/10.0)
Python (3.8.5)

pip==21.1.1
setuptools==56.2.0
packaging==20.9
numpy==1.20.3
opencv-python==4.5.2.52
scipy==1.6.3
matplotlib==3.4.2
pandas==1.2.4
scikit-learn==0.24.2
scikit-image==0.18.1
Pillow==8.2.0
librosa==0.8.0
albumentations==0.5.2
pyzmq==22.0.3
Cython==0.29.23
numba==0.53.1
requests==2.25.1
psutil==5.8.0
trafaret-config==2.0.2
pydantic==1.8.1
PyYAML==5.4.1
notebook==6.3.0
ipywidgets==7.6.3
tqdm==4.60.0
pytest==6.2.4
mypy==0.812
flake8==3.9.2

dokai:21.07-base

ghcr.io/osai-ai/dokai:21.07-base

CUDA (11.3.1), cuDNN (8.2.0)
FFmpeg (release/4.4), nv-codec-headers (sdk/10.0)
Python (3.8.10)

pip==21.1.3
setuptools==57.0.0
packaging==20.9
numpy==1.21.0
opencv-python==4.5.2.54
scipy==1.7.0
matplotlib==3.4.2
pandas==1.2.5
scikit-learn==0.24.2
scikit-image==0.18.2
Pillow==8.2.0
librosa==0.8.1
albumentations==1.0.0
pyzmq==22.1.0
Cython==0.29.23
numba==0.53.1
requests==2.25.1
psutil==5.8.0
trafaret-config==2.0.2
pydantic==1.8.2
PyYAML==5.4.1
notebook==6.4.0
ipywidgets==7.6.3
tqdm==4.61.1
pytest==6.2.4
mypy==0.910
flake8==3.9.2

dokai:21.08-base

ghcr.io/osai-ai/dokai:21.08-base

CUDA (11.4.1), cuDNN (8.2.2)
FFmpeg (release/4.4), nv-codec-headers (sdk/11.0)
Python (3.8.10)

pip==21.2.3
setuptools==57.4.0
packaging==21.0
numpy==1.21.1
opencv-python==4.5.3.56
scipy==1.7.1
matplotlib==3.4.2
pandas==1.3.1
scikit-learn==0.24.2
scikit-image==0.18.2
Pillow==8.3.1
librosa==0.8.1
albumentations==1.0.3
pyzmq==22.2.1
Cython==0.29.24
numba==0.53.1
requests==2.26.0
psutil==5.8.0
pydantic==1.8.2
PyYAML==5.4.1
notebook==6.4.3
ipywidgets==7.6.3
tqdm==4.62.0
pytest==6.2.4
mypy==0.910
flake8==3.9.2

dokai:21.09-base

ghcr.io/osai-ai/dokai:21.09-base

CUDA (11.4.2), cuDNN (8.2.4)
FFmpeg (release/4.4), nv-codec-headers (sdk/11.0)
Python (3.8.10)

pip==21.2.4
setuptools==58.1.0
packaging==21.0
numpy==1.21.2
opencv-python==4.5.3.56
scipy==1.7.1
matplotlib==3.4.3
pandas==1.3.3
scikit-learn==1.0
scikit-image==0.18.3
Pillow==8.3.2
librosa==0.8.1
albumentations==1.0.3
pyzmq==22.3.0
Cython==0.29.24
numba==0.53.1
requests==2.26.0
psutil==5.8.0
pydantic==1.8.2
PyYAML==5.4.1
notebook==6.4.4
ipywidgets==7.6.5
tqdm==4.62.3
pytest==6.2.5
mypy==0.910
flake8==3.9.2

pytorch

dokai:20.09-pytorch

ghcr.io/osai-ai/dokai:20.09-pytorch

additionally to dokai:20.09-base:

torch==1.6.0
torchvision==0.7.0
pytorch-argus==0.1.2
timm==0.2.1
apex (master)

dokai:20.10-pytorch

ghcr.io/osai-ai/dokai:20.10-pytorch

additionally to dokai:20.10-base:

torch==1.6.0
torchvision==0.7.0
pytorch-argus==0.1.2
timm==0.2.1
apex (master)

dokai:20.12-pytorch

ghcr.io/osai-ai/dokai:20.12-pytorch

additionally to dokai:20.12-base:

torch==1.7.1 (source, v1.7.1 tag)
torchvision==0.8.2 (source, v0.8.2 tag)
pytorch-argus==0.2.0
timm==0.3.2
kornia==0.4.1
apex (source, master branch)

dokai:21.01-pytorch

ghcr.io/osai-ai/dokai:21.01-pytorch

additionally to dokai:21.01-base:

torch==1.8.0a0+4aea007 (source, master branch)
torchvision==0.8.2 (source, v0.8.2 tag)
pytorch-argus==0.2.0
timm==0.3.4
kornia==0.4.1
apex (source, master branch)

dokai:21.02-pytorch

ghcr.io/osai-ai/dokai:21.02-pytorch

additionally to dokai:21.02-base:

torch==1.9.0a0+c2b9283 (source, master branch)
torchvision==0.8.2 (source, v0.8.2 tag)
pytorch-argus==0.2.0
timm==0.4.4 (source, master branch)
kornia==0.4.1
pretrainedmodels==0.7.4
efficientnet-pytorch==0.7.0
segmentation-models-pytorch==0.1.3
apex (source, master branch)

dokai:21.03-pytorch

ghcr.io/osai-ai/dokai:21.03-pytorch

additionally to dokai:21.03-base:

torch==1.8.0 (source, v1.8.0 tag)
torchvision==0.9.0 (source, v0.9.0 tag)
torchaudio==0.8.0 (source, v0.8.0 tag)
pytorch-argus==0.2.1
timm==0.4.5
kornia==0.5.0
pretrainedmodels==0.7.4
efficientnet-pytorch==0.7.0
segmentation-models-pytorch==0.1.3
apex (source, master branch)

dokai:21.05-pytorch

ghcr.io/osai-ai/dokai:21.05-pytorch

additionally to dokai:21.05-base:

torch==1.8.1 (source, v1.8.1 tag)
torchvision==0.9.1 (source, v0.9.1 tag)
torchaudio==0.8.1 (source, v0.8.1 tag)
pytorch-argus==0.2.1
timm==0.4.8 (source, master branch)
kornia==0.5.1
pretrainedmodels==0.7.4
efficientnet-pytorch==0.7.1
segmentation-models-pytorch==0.1.3
apex (source, master branch)

dokai:21.07-pytorch

ghcr.io/osai-ai/dokai:21.07-pytorch

additionally to dokai:21.07-base:

torch==1.9.0 (source, v1.9.0 tag)
torchvision==0.10.0 (source, v0.10.0 tag)
torchaudio==0.9.0 (source, v0.9.0 tag)
pytorch-argus==0.2.1
pretrainedmodels==0.7.4
efficientnet-pytorch==0.7.1
timm==0.4.12
segmentation-models-pytorch==0.1.3
kornia==0.5.5
apex (source, master branch)

dokai:21.08-pytorch

ghcr.io/osai-ai/dokai:21.08-pytorch

additionally to dokai:21.08-base:

MAGMA (2.6.1)

torch==1.10.0a0+git5b8389e (source, master branch)
torchvision==0.10.0 (source, v0.10.0 tag)
torchaudio==0.9.0 (source, v0.9.0 tag)
pytorch-ignite==0.4.6
pytorch-argus==0.2.1
pretrainedmodels==0.7.4
efficientnet-pytorch==0.7.1
timm==0.4.12
segmentation-models-pytorch==0.2.0
kornia==0.5.8
apex (source, master branch)

dokai:21.09-pytorch

ghcr.io/osai-ai/dokai:21.09-pytorch

additionally to dokai:21.09-base:

MAGMA (2.6.1)

torch==1.10.0-rc1 (source, v1.10.0-rc1 tag)
torchvision==0.10.1 (source, v0.10.1 tag)
torchaudio==0.9.1 (source, v0.9.1 tag)
pytorch-ignite==0.4.6
pytorch-argus==0.2.1
pretrainedmodels==0.7.4
efficientnet-pytorch==0.7.1
timm==0.4.12
segmentation-models-pytorch==0.2.0
kornia==0.5.11
apex (source, master branch)

tensor-stream

dokai:20.09-tensor-stream

ghcr.io/osai-ai/dokai:20.09-tensor-stream

additionally to dokai:20.09-pytorch:

tensor-stream==0.4.6 (dev)

dokai:20.10-tensor-stream

ghcr.io/osai-ai/dokai:20.10-tensor-stream

additionally to dokai:20.10-pytorch:

tensor-stream==0.4.6 (dev)

dokai:20.12-tensor-stream

ghcr.io/osai-ai/dokai:20.12-tensor-stream

additionally to dokai:20.12-pytorch:

tensor-stream==0.4.6 (source, dev branch)

dokai:21.01-tensor-stream

ghcr.io/osai-ai/dokai:21.01-tensor-stream

additionally to dokai:21.01-pytorch:

tensor-stream==0.4.6 (source, dev branch)

dokai:21.02-tensor-stream

ghcr.io/osai-ai/dokai:21.02-tensor-stream

additionally to dokai:21.02-pytorch:

tensor-stream==0.4.6 (source, dev branch)

dokai:21.03-tensor-stream

ghcr.io/osai-ai/dokai:21.03-tensor-stream

additionally to dokai:21.03-pytorch:

tensor-stream==0.4.6 (source, dev branch)

dokai:21.05-tensor-stream

ghcr.io/osai-ai/dokai:21.05-tensor-stream

additionally to dokai:21.05-pytorch:

tensor-stream==0.4.6 (source, dev branch)

dokai:21.07-tensor-stream

ghcr.io/osai-ai/dokai:21.07-tensor-stream

additionally to dokai:21.07-pytorch:

tensor-stream==0.4.6 (source, dev branch)

dokai:21.08-tensor-stream

ghcr.io/osai-ai/dokai:21.08-tensor-stream

additionally to dokai:21.08-pytorch:

tensor-stream==0.4.6 (source, dev branch)

dokai:21.09-tensor-stream

ghcr.io/osai-ai/dokai:21.09-tensor-stream

additionally to dokai:21.09-pytorch:

tensor-stream==0.4.6 (source, dev branch)

You might also like...
This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.
This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.

Self Driving Car An autonomous car (also known as a driverless car, self-driving car, and robotic car) is a vehicle that is capable of sensing its env

Doods2 - API for detecting objects in images and video streams using Tensorflow

DOODS2 - Return of DOODS Dedicated Open Object Detection Service - Yes, it's a b

Search Youtube Video and Get Video info
Search Youtube Video and Get Video info

PyYouTube Get Video Data from YouTube link Installation pip install PyYouTube How to use it ? Get Videos Data from pyyoutube import Data yt = Data("ht

We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Video lie detector using xgboost - A video lie detector using OpenFace and xgboost

video_lie_detector_using_xgboost a video lie detector using OpenFace and xgboost

 MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images
MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images

Main repo for ECCV 2020 paper MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images. visual.cs.brown.edu/matryodshka

Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker
Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker

Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker This repository contai

[NeurIPS 2020] Blind Video Temporal Consistency via Deep Video Prior
[NeurIPS 2020] Blind Video Temporal Consistency via Deep Video Prior

pytorch-deep-video-prior (DVP) Official PyTorch implementation for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior TensorFlo

Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic video-to-video translation.
Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic video-to-video translation.

vid2vid Project | YouTube(short) | YouTube(full) | arXiv | Paper(full) Pytorch implementation for high-resolution (e.g., 2048x1024) photorealistic vid

Comments
  • Does not work `torchaudio.transforms.MelSpectrogram`, no MKL

    Does not work `torchaudio.transforms.MelSpectrogram`, no MKL

    I used docker pulled from ghcr.io/osai-ai/dokai:21.05-pytorch.

    The following code gives an error:

    python -c 'import torchaudio; import torch; a = torch.randn(2, 4663744); torchaudio.transforms.MelSpectrogram(44100)(a)'

    /usr/local/lib/python3.8/dist-packages/torchaudio-0.8.0a0+e4e171a-py3.8-linux-x86_64.egg/torchaudio/functional/functional.py:357: UserWarning: At least one mel filterbank has all zero values. The value for `n_mels` (128) may be set too high. Or, the value for `n_freqs` (201) may be set too low.
      warnings.warn(
    Traceback (most recent call last):
      File "<string>", line 1, in <module>
      File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 889, in _call_impl
        result = self.forward(*input, **kwargs)
      File "/usr/local/lib/python3.8/dist-packages/torchaudio-0.8.0a0+e4e171a-py3.8-linux-x86_64.egg/torchaudio/transforms.py", line 480, in forward
        specgram = self.spectrogram(waveform)
      File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 889, in _call_impl
        result = self.forward(*input, **kwargs)
      File "/usr/local/lib/python3.8/dist-packages/torchaudio-0.8.0a0+e4e171a-py3.8-linux-x86_64.egg/torchaudio/transforms.py", line 96, in forward
        return F.spectrogram(
      File "/usr/local/lib/python3.8/dist-packages/torchaudio-0.8.0a0+e4e171a-py3.8-linux-x86_64.egg/torchaudio/functional/functional.py", line 91, in spectrogram
        spec_f = torch.stft(
      File "/usr/local/lib/python3.8/dist-packages/torch/functional.py", line 580, in stft
        return _VF.stft(input, n_fft, hop_length, win_length, window,  # type: ignore
    RuntimeError: fft: ATen not compiled with MKL support
    

    and this check python -c 'import torch; a = torch.randn(10); print(a.to_mkldnn().layout)' works correctly.

    opened by Ayagoz 2
  • Expired link to nv-codec-headers repo

    Expired link to nv-codec-headers repo

    Hi, git.videolan.org is experiencing some issues again, it looks like the certificate for the domain is expired or something like that (but it was alive just a week ago!). Also, they are migrating to code.videolan.org, however nv-codec-headers is not there yet.

    The current link does not work: https://github.com/osai-ai/dokai/blob/6f99608b70881de43740bc84c34f42249f4f65aa/docker/Dockerfile.base#L43

    Temporary workaround: https://github.com/FFmpeg/nv-codec-headers.git

    opened by NikolasEnt 1
Releases(v22.11)
  • v22.11(Nov 22, 2022)

    Updates

    • TensorRT 8.5.1
    • torch 1.14.0a0+git71fe069 (source, close to v1.13.0 after commit "ada lovelace (arch 8.9) support #87436")
    • torchvision 0.14.0 (from source, v0.14.0 tag)
    • torchaudio 0.13.0 (from source, v0.13.0 tag)
    • Update other PyPI packages
    • Ada Lovelace architecture support
    • PyTorch image models benchmark link

    Images

    base

    Python with ML and CV packages, CUDA (11.8.0), cuDNN (8.6.0), FFmpeg (4.4) with NVENC/NVDEC support ghcr.io/osai-ai/dokai:22.11-base

    dokai:22.11-base

    Supported NVIDIA architectures: Pascal (sm_60, sm_61), Volta (sm_70), Turing (sm_75), Ampere (sm_80, sm_86), Ada Lovelace (sm_89).

    CUDA (11.8.0), cuDNN (8.6.0) FFmpeg (release/4.4), nv-codec-headers (sdk/11.0) Python (3.10.6) CMake (3.22.1)

    pip==22.3.1 setuptools==65.5.1 packaging==21.3 numpy==1.23.4 opencv-python==4.6.0.66 scipy==1.9.3 matplotlib==3.6.2 pandas==1.5.1 scikit-learn==1.1.3 scikit-image==0.19.3 Pillow==9.3.0 librosa==0.9.2 albumentations==1.3.0 pyzmq==24.0.1 Cython==0.29.32 numba==0.56.4 requests==2.28.1 psutil==5.9.4 pydantic==1.10.2 PyYAML==6.0 notebook==6.5.2 ipywidgets==8.0.2 tqdm==4.64.1 pytest==7.2.0 pytest-cov==4.0.0 mypy==0.991 flake8==5.0.4 pre-commit==2.20.0

    pytorch

    TensorRT (8.5.1) , PyTorch (1.13.0), torchvision (0.14.0), torchaudio (0.13.0) and torch based libraries. ghcr.io/osai-ai/dokai:22.11-pytorch

    dokai:22.11-pytorch

    additionally to dokai:22.11-base:

    TensorRT (8.5.1) MAGMA (2.6.2)

    torch==1.14.0a0+git71fe069 (source, close to v1.13.0 after commit "ada lovelace (arch 8.9) support #87436") torchvision==0.14.0 (source, v0.14.0 tag) torchaudio==0.13.0 (source, v0.13.0 tag) pytorch-ignite==0.4.10 pytorch-argus==1.0.0 pretrainedmodels==0.7.4 efficientnet-pytorch==0.7.1 pytorch-toolbelt==0.5.2 kornia==0.6.8 timm==0.6.11 segmentation-models-pytorch==0.3.0

    tensor-stream

    Tensor Stream for real-time video streams decoding on GPU.
    ghcr.io/osai-ai/dokai:22.11-tensor-stream

    dokai:22.11-tensor-stream

    additionally to dokai:22.11-pytorch:

    tensor-stream==0.4.6 (source, dev branch)

    Source code(tar.gz)
    Source code(zip)
    build_logs.zip(471.12 KB)
  • v22.03(Mar 28, 2022)

    Updates

    • CUDA 11.6.0
    • torch 1.11.0 (from source, v1.11.0 tag)
    • torchvision 0.12.0 (from source, v0.12.0 tag)
    • torchaudio 0.11.0 (from source, v0.11.0 tag)
    • CMake (3.22.2)
    • Update other PyPI packages
    • Update README

    Images

    base

    Python with ML and CV packages, CUDA (11.6.0), FFmpeg (4.4) with NVENC support.

    dokai:22.03-base

    ghcr.io/osai-ai/dokai:22.03-base

    CUDA (11.6.0) FFmpeg (release/4.4), nv-codec-headers (sdk/11.0)
    Python (3.8.10)
    CMake (3.22.2)

    pip==22.0.3
    setuptools==59.5.0
    packaging==21.3
    numpy==1.21.5
    opencv-python==4.5.5.62
    scipy==1.8.0
    matplotlib==3.5.1
    pandas==1.4.1
    scikit-learn==1.0.1
    scikit-image==0.18.3
    Pillow==8.4.0
    librosa==0.8.1
    albumentations==1.1.0
    pyzmq==22.3.0
    Cython==0.29.24
    numba==0.53.1
    requests==2.26.0
    psutil==5.8.0
    pydantic==1.8.2
    PyYAML==6.0
    notebook==6.4.5
    ipywidgets==7.6.5
    tqdm==4.62.3
    pytest==6.2.5
    mypy==0.910
    flake8==4.0.1

    pytorch

    PyTorch, torchvision and torch based libraries.

    dokai:22.03-pytorch

    ghcr.io/osai-ai/dokai:22.03-pytorch

    additionally to dokai:22.03-base:

    MAGMA (2.6.1)

    torch==1.11.0 (source, v1.11.0 tag)
    torchvision==0.12.0 (source, v0.12.0 tag)
    torchaudio==0.11.0 (source, v0.11.0 tag)
    pytorch-ignite==0.4.8
    pytorch-argus==1.0.0
    pretrainedmodels==0.7.4
    efficientnet-pytorch==0.7.1
    timm==0.5.4
    segmentation-models-pytorch==0.2.1
    kornia==0.6.3

    tensor-stream

    Tensor Stream.

    dokai:22.03-tensor-stream

    ghcr.io/osai-ai/dokai:22.03-tensor-stream

    additionally to dokai:22.03-pytorch:

    tensor-stream==0.4.6 (source, dev branch)

    Source code(tar.gz)
    Source code(zip)
  • v21.11(Nov 9, 2021)

    Updates

    • torch 1.10.0 (from source, v1.10.0 tag)
    • torchvision 0.11.1 (from source, v0.11.1 tag)
    • torchaudio 0.10.0 (from source, v0.10.0 tag)
    • CMake (3.21.4)
    • Remove Apex installation
    • Update other PyPI packages

    Images

    base

    Python with ML and CV packages, CUDA (11.4.2), cuDNN (8.2.4), FFmpeg (4.4) with NVENC support.
    ghcr.io/osai-ai/dokai:21.11-base

    dokai:21.11-base

    CUDA (11.4.2), cuDNN (8.2.4)
    FFmpeg (release/4.4), nv-codec-headers (sdk/11.0)
    Python (3.8.10)
    CMake (3.21.4)

    pip==21.3.1
    setuptools==58.5.3
    packaging==21.2
    numpy==1.21.4
    opencv-python==4.5.4.58
    scipy==1.7.2
    matplotlib==3.4.3
    pandas==1.3.4
    scikit-learn==1.0.1
    scikit-image==0.18.3
    Pillow==8.4.0
    librosa==0.8.1
    albumentations==1.1.0
    pyzmq==22.3.0
    Cython==0.29.24
    numba==0.53.1
    requests==2.26.0
    psutil==5.8.0
    pydantic==1.8.2
    PyYAML==6.0
    notebook==6.4.5
    ipywidgets==7.6.5
    tqdm==4.62.3
    pytest==6.2.5
    mypy==0.910
    flake8==4.0.1

    pytorch

    PyTorch, torchvision, Apex and torch based libraries.
    ghcr.io/osai-ai/dokai:21.11-pytorch

    dokai:21.11-pytorch

    additionally to dokai:21.11-base:

    MAGMA (2.6.1)

    torch==1.10.0 (source, v1.10.0 tag)
    torchvision==0.11.1 (source, v0.11.1 tag)
    torchaudio==0.10.0 (source, v0.10.0 tag)
    pytorch-ignite==0.4.7
    pytorch-argus==1.0.0
    pretrainedmodels==0.7.4
    efficientnet-pytorch==0.7.1
    timm==0.4.12
    segmentation-models-pytorch==0.2.0
    kornia==0.6.1

    tensor-stream

    Tensor Stream.
    ghcr.io/osai-ai/dokai:21.11-tensor-stream

    dokai:21.11-tensor-stream

    additionally to dokai:21.11-pytorch:

    tensor-stream==0.4.6 (source, dev branch)

    Source code(tar.gz)
    Source code(zip)
  • v21.09(Sep 30, 2021)

    Updates

    • CUDA 11.4.2, cuDNN 8.2.4
    • Build torch 1.10.0-rc1 (from source, v1.10.0-rc1 tag)
    • FFmpeg with HTTPS support
    • kornia 0.5.11
    • Update other PyPI packages

    Images

    base

    Python with ML and CV packages, CUDA (11.4.2), cuDNN (8.2.4), FFmpeg (4.4) with NVENC support.
    ghcr.io/osai-ai/dokai:21.09-base

    dokai:21.09-base

    CUDA (11.4.2), cuDNN (8.2.4)
    FFmpeg (release/4.4), nv-codec-headers (sdk/11.0)
    Python (3.8.10)

    pip==21.2.4
    setuptools==58.1.0
    packaging==21.0
    numpy==1.21.2
    opencv-python==4.5.3.56
    scipy==1.7.1
    matplotlib==3.4.3
    pandas==1.3.3
    scikit-learn==1.0
    scikit-image==0.18.3
    Pillow==8.3.2
    librosa==0.8.1
    albumentations==1.0.3
    pyzmq==22.3.0
    Cython==0.29.24
    numba==0.53.1
    requests==2.26.0
    psutil==5.8.0
    pydantic==1.8.2
    PyYAML==5.4.1
    notebook==6.4.4
    ipywidgets==7.6.5
    tqdm==4.62.3
    pytest==6.2.5
    mypy==0.910
    flake8==3.9.2

    pytorch

    PyTorch, torchvision, Apex and torch based libraries.
    ghcr.io/osai-ai/dokai:21.09-pytorch

    dokai:21.09-pytorch

    additionally to dokai:21.09-base:

    MAGMA (2.6.1)

    torch==1.10.0-rc1 (source, v1.10.0-rc1 tag)
    torchvision==0.10.1 (source, v0.10.1 tag)
    torchaudio==0.9.1 (source, v0.9.1 tag)
    pytorch-ignite==0.4.6
    pytorch-argus==0.2.1
    pretrainedmodels==0.7.4
    efficientnet-pytorch==0.7.1
    timm==0.4.12
    segmentation-models-pytorch==0.2.0
    kornia==0.5.11
    apex (source, master branch)

    tensor-stream

    Tensor Stream.
    ghcr.io/osai-ai/dokai:21.09-tensor-stream

    dokai:21.09-tensor-stream

    additionally to dokai:21.09-pytorch:

    tensor-stream==0.4.6 (source, dev branch)

    Source code(tar.gz)
    Source code(zip)
  • v21.08(Aug 12, 2021)

    Updates

    • CUDA 11.4.1, cuDNN 8.2.2
    • nv-codec-headers (sdk/11.0)
    • MAGMA 2.6.1
    • Build torch 1.10.0a0+git5b8389e from source (master branch)
    • pytorch-ignite 0.4.6
    • segmentation-models-pytorch 0.2.0
    • kornia 0.5.8
    • Update other PyPI packages

    Images

    base

    Python with ML and CV packages, CUDA (11.4.1), cuDNN (8.2.2), FFmpeg (4.4) with NVENC support.
    ghcr.io/osai-ai/dokai:21.08-base

    dokai:21.08-base

    CUDA (11.4.1), cuDNN (8.2.2)
    FFmpeg (release/4.4), nv-codec-headers (sdk/11.0)
    Python (3.8.10)

    pip==21.2.3
    setuptools==57.4.0
    packaging==21.0
    numpy==1.21.1
    opencv-python==4.5.3.56
    scipy==1.7.1
    matplotlib==3.4.2
    pandas==1.3.1
    scikit-learn==0.24.2
    scikit-image==0.18.2
    Pillow==8.3.1
    librosa==0.8.1
    albumentations==1.0.3
    pyzmq==22.2.1
    Cython==0.29.24
    numba==0.53.1
    requests==2.26.0
    psutil==5.8.0
    pydantic==1.8.2
    PyYAML==5.4.1
    notebook==6.4.3
    ipywidgets==7.6.3
    tqdm==4.62.0
    pytest==6.2.4
    mypy==0.910
    flake8==3.9.2

    pytorch

    PyTorch, torchvision, Apex and torch based libraries.
    ghcr.io/osai-ai/dokai:21.08-pytorch

    dokai:21.08-pytorch

    additionally to dokai:21.08-base:

    MAGMA (2.6.1)

    torch==1.10.0a0+git5b8389e (source, master branch)
    torchvision==0.10.0 (source, v0.10.0 tag)
    torchaudio==0.9.0 (source, v0.9.0 tag)
    pytorch-ignite==0.4.6
    pytorch-argus==0.2.1
    pretrainedmodels==0.7.4
    efficientnet-pytorch==0.7.1
    timm==0.4.12
    segmentation-models-pytorch==0.2.0
    kornia==0.5.8
    apex (source, master branch)

    tensor-stream

    Tensor Stream.
    ghcr.io/osai-ai/dokai:21.08-tensor-stream

    dokai:21.08-tensor-stream

    additionally to dokai:21.08-pytorch:

    tensor-stream==0.4.6 (source, dev branch)

    Source code(tar.gz)
    Source code(zip)
  • v21.07(Jul 2, 2021)

    Updates

    • CUDA 11.3.1
    • Build torch 1.9.0 from source (v1.9.0 tag)
    • torchvision 0.10.0 from source (v0.10.0 tag)
    • torchaudio 0.9.0 from source (v0.9.0 tag)
    • timm 0.4.12
    • kornia 0.5.5
    • Update other PyPI packages

    Images

    base

    Python with ML and CV packages, CUDA (11.3.1), cuDNN (8.2.0), FFmpeg (4.4) with NVENC support.
    ghcr.io/osai-ai/dokai:21.07-base

    dokai:21.07-base

    CUDA (11.3.1), cuDNN (8.2.0)
    FFmpeg (release/4.4), nv-codec-headers (sdk/10.0)
    Python (3.8.10)

    pip==21.1.3
    setuptools==57.0.0
    packaging==20.9
    numpy==1.21.0
    opencv-python==4.5.2.54
    scipy==1.7.0
    matplotlib==3.4.2
    pandas==1.2.5
    scikit-learn==0.24.2
    scikit-image==0.18.2
    Pillow==8.2.0
    librosa==0.8.1
    albumentations==1.0.0
    pyzmq==22.1.0
    Cython==0.29.23
    numba==0.53.1
    requests==2.25.1
    psutil==5.8.0
    trafaret-config==2.0.2
    pydantic==1.8.2
    PyYAML==5.4.1
    notebook==6.4.0
    ipywidgets==7.6.3
    tqdm==4.61.1
    pytest==6.2.4
    mypy==0.910
    flake8==3.9.2

    pytorch

    PyTorch, torchvision, Apex and torch based libraries.
    ghcr.io/osai-ai/dokai:21.07-pytorch

    dokai:21.07-pytorch

    additionally to dokai:21.07-base:

    torch==1.9.0 (source, v1.9.0 tag)
    torchvision==0.10.0 (source, v0.10.0 tag)
    torchaudio==0.9.0 (source, v0.9.0 tag)
    pytorch-argus==0.2.1
    pretrainedmodels==0.7.4
    efficientnet-pytorch==0.7.1
    timm==0.4.12
    segmentation-models-pytorch==0.1.3
    kornia==0.5.5
    apex (source, master branch)

    tensor-stream

    Tensor Stream.
    ghcr.io/osai-ai/dokai:21.07-tensor-stream

    dokai:21.07-tensor-stream

    additionally to dokai:21.07-pytorch:

    tensor-stream==0.4.6 (source, dev branch)

    Source code(tar.gz)
    Source code(zip)
  • v21.05(May 11, 2021)

    Updates

    • CUDA 11.3, cuDNN 8.2.0
    • Build torch 1.8.1 from source (v1.8.1 tag)
    • torchvision 0.9.1 from source (v0.9.1 tag)
    • torchaudio 0.8.1 from source (v0.8.1 tag)
    • timm 0.4.8 from source (master branch)
    • Update other PyPI packages

    Images

    base

    Python with ML and CV packages, CUDA (11.3), cuDNN (8.2.0), FFmpeg (4.4) with NVENC support.
    ghcr.io/osai-ai/dokai:21.05-base

    dokai:21.05-base

    CUDA (11.3), cuDNN (8.2.0)
    FFmpeg (release/4.4), nv-codec-headers (sdk/10.0)
    Python (3.8.5)

    pip==21.1.1
    setuptools==56.2.0
    packaging==20.9
    numpy==1.20.3
    opencv-python==4.5.2.52
    scipy==1.6.3
    matplotlib==3.4.2
    pandas==1.2.4
    scikit-learn==0.24.2
    scikit-image==0.18.1
    Pillow==8.2.0
    librosa==0.8.0
    albumentations==0.5.2
    pyzmq==22.0.3
    Cython==0.29.23
    numba==0.53.1
    requests==2.25.1
    psutil==5.8.0
    trafaret-config==2.0.2
    pydantic==1.8.1
    PyYAML==5.4.1
    notebook==6.3.0
    ipywidgets==7.6.3
    tqdm==4.60.0
    pytest==6.2.4
    mypy==0.812
    flake8==3.9.2

    pytorch

    PyTorch, torchvision, Apex and torch based libraries.
    ghcr.io/osai-ai/dokai:21.05-pytorch

    dokai:21.05-pytorch

    additionally to dokai:21.05-base:

    torch==1.8.1 (source, v1.8.1 tag)
    torchvision==0.9.1 (source, v0.9.1 tag)
    torchaudio==0.8.1 (source, v0.8.1 tag)
    pytorch-argus==0.2.1
    timm==0.4.8 (source, master branch)
    kornia==0.5.1
    pretrainedmodels==0.7.4
    efficientnet-pytorch==0.7.1
    segmentation-models-pytorch==0.1.3
    apex (source, master branch)

    tensor-stream

    Tensor Stream.
    ghcr.io/osai-ai/dokai:21.05-tensor-stream

    dokai:21.05-tensor-stream

    additionally to dokai:21.05-pytorch:

    tensor-stream==0.4.6 (source, dev branch)

    Source code(tar.gz)
    Source code(zip)
  • v21.03(Mar 25, 2021)

    Updates

    • CUDA 11.2.2, cuDNN 8.1.1
    • FFmpeg 4.4
    • Build torch 1.8.0 from source (v1.8.0 tag)
    • torchvision 0.9.0
    • Add PyTorch package: torchaudio 0.8.0
    • timm 0.4.5
    • pytorch-argus 0.2.1
    • Update other PyPI packages
    • Support more GPU architectures for FFmpeg

    Images

    base

    Python with ML and CV packages, CUDA (11.2.2), cuDNN (8.1.1), FFmpeg (4.4) with NVENC support.
    ghcr.io/osai-ai/dokai:21.03-base

    dokai:21.03-base

    ghcr.io/osai-ai/dokai:21.03-base

    CUDA (11.2.2), cuDNN (8.1.1)
    FFmpeg (release/4.4), nv-codec-headers (sdk/10.0)
    Python (3.8.5)

    pip==21.0.1
    setuptools==54.2.0
    packaging==20.9
    numpy==1.20.1
    opencv-python==4.5.1.48
    scipy==1.6.1
    matplotlib==3.3.4
    pandas==1.2.3
    scikit-learn==0.24.1
    scikit-image==0.18.1
    Pillow==8.1.2
    librosa==0.8.0
    albumentations==0.5.2
    pyzmq==22.0.3
    Cython==0.29.22
    numba==0.53.0
    requests==2.25.1
    psutil==5.8.0
    trafaret-config==2.0.2
    pydantic==1.8.1
    PyYAML==5.4.1
    notebook==6.3.0
    ipywidgets==7.6.3
    tqdm==4.59.0
    pytest==6.2.2
    mypy==0.812
    flake8==3.9.0

    pytorch

    PyTorch, torchvision, Apex and torch based libraries.
    ghcr.io/osai-ai/dokai:21.03-pytorch

    dokai:21.03-pytorch

    additionally to dokai:21.03-base:

    torch==1.8.0 (source, v1.8.0 tag)
    torchvision==0.9.0 (source, v0.9.0 tag)
    torchaudio==0.8.0 (source, v0.8.0 tag)
    pytorch-argus==0.2.1
    timm==0.4.5
    kornia==0.5.0
    pretrainedmodels==0.7.4
    efficientnet-pytorch==0.7.0
    segmentation-models-pytorch==0.1.3
    apex (source, master branch)

    tensor-stream

    Tensor Stream.
    ghcr.io/osai-ai/dokai:21.03-tensor-stream

    dokai:21.03-tensor-stream

    additionally to dokai:21.03-pytorch:

    tensor-stream==0.4.6 (source, dev branch)

    Source code(tar.gz)
    Source code(zip)
  • v21.02(Feb 23, 2021)

    New features

    • CUDA 11.2.1, cuDNN 8.1.0
    • Build torch 1.9.0a0+c2b9283 from source (master branch)
    • Install timm 0.4.4 from source (master branch)
    • Add more Python packages: tqdm, PyYAML, pytest, mypy, flake8
    • Add more PyTorch packages: pretrainedmodels, efficientnet-pytorch, segmentation-models-pytorch
    • Update other PyPI packages

    Images

    base

    Python with ML and CV packages, CUDA (11.2.1), cuDNN (8.1.0), FFmpeg with NVENC support.
    ghcr.io/osai-ai/dokai:21.02-base

    dokai:21.02-base

    CUDA (11.2.1), cuDNN (8.1.0)
    FFmpeg (release/4.3), nv-codec-headers (sdk/10.0)
    Python (3.8.5)

    pip==21.0.1
    setuptools==53.0.0
    packaging==20.9
    numpy==1.20.1
    opencv-python==4.5.1.48
    scipy==1.6.1
    matplotlib==3.3.4
    pandas==1.2.2
    scikit-learn==0.24.1
    scikit-image==0.18.1
    Pillow==8.1.0
    librosa==0.8.0
    albumentations==0.5.2
    pyzmq==22.0.3
    Cython==0.29.22
    numba==0.52.0
    requests==2.25.1
    psutil==5.8.0
    trafaret-config==2.0.2
    pydantic==1.7.3
    PyYAML==5.4.1
    notebook==6.2.0
    ipywidgets==7.6.3
    tqdm==4.57.0
    pytest==6.2.2
    mypy==0.812
    flake8==3.8.4

    pytorch

    PyTorch, torchvision, Apex and torch based libraries.
    ghcr.io/osai-ai/dokai:21.02-pytorch

    dokai:21.02-pytorch

    additionally to dokai:21.02-base:

    torch==1.9.0a0+c2b9283 (source, master branch)
    torchvision==0.8.2 (source, v0.8.2 tag)
    pytorch-argus==0.2.0
    timm==0.4.4 (source, master branch)
    kornia==0.4.1
    pretrainedmodels==0.7.4
    efficientnet-pytorch==0.7.0
    segmentation-models-pytorch==0.1.3
    apex (source, master branch)

    tensor-stream

    Tensor Stream.
    ghcr.io/osai-ai/dokai:21.02-tensor-stream

    dokai:21.02-tensor-stream

    additionally to dokai:21.02-pytorch:

    tensor-stream==0.4.6 (source, dev branch)

    Source code(tar.gz)
    Source code(zip)
  • v21.01(Jan 21, 2021)

    New features

    • CUDA 11.1.1
    • nv-codec-headers (sdk/10.0)
    • Build torch 1.8.0a0+4aea007 from source (master branch)
    • Update other PyPI packages
    • Docker Hub mirror

    Images

    base

    Python with ML and CV packages, CUDA, FFmpeg with NVENC support.
    ghcr.io/osai-ai/dokai:21.01-base

    dokai:21.01-base

    CUDA (11.1.1), cuDNN (8.0.5)
    FFmpeg (release/4.3), nv-codec-headers (sdk/10.0)
    Python (3.8.5)

    pip==20.3.3
    setuptools==51.3.3
    packaging==20.8
    numpy==1.19.5
    opencv-python==4.5.1.48
    scipy==1.6.0
    matplotlib==3.3.3
    pandas==1.2.0
    notebook==6.2.0
    scikit-learn==0.24.1
    scikit-image==0.18.1
    albumentations==0.5.2
    Cython==0.29.21
    Pillow==8.1.0
    trafaret-config==2.0.2
    pyzmq==21.0.1
    librosa==0.8.0
    psutil==5.8.0
    pydantic==1.7.3
    requests==2.25.1

    pytorch

    PyTorch, torchvision, Apex and torch based libraries.
    ghcr.io/osai-ai/dokai:21.01-pytorch

    dokai:21.01-pytorch

    additionally to dokai:21.01-base:

    torch==1.8.0a0+4aea007 (source, master branch)
    torchvision==0.8.2 (source, v0.8.2 tag)
    pytorch-argus==0.2.0
    timm==0.3.4
    kornia==0.4.1
    apex (source, master branch)

    tensor-stream

    Tensor Stream.
    ghcr.io/osai-ai/dokai:21.01-tensor-stream

    dokai:21.01-tensor-stream

    additionally to dokai:21.01-pytorch:

    tensor-stream==0.4.6 (source, dev branch)

    Source code(tar.gz)
    Source code(zip)
  • v20.12(Dec 24, 2020)

    New features

    • CUDA 11.1, cuDNN 8.0.5, Ubuntu 20.04, Python 3.8.5
    • Build PyTorch and torchvision from source
    • Build CUDA libraries for Ampere architecture (TORCH_CUDA_ARCH_LIST="6.0;6.1;7.0;7.5;8.0;8.6")
    • kornia

    Images

    base

    Python with ML and CV packages, CUDA, FFmpeg with NVENC support.
    ghcr.io/osai-ai/dokai:20.12-base

    dokai:20.12-base

    CUDA (11.1), cuDNN (8.0.5) FFmpeg (release/4.3), nv-codec-headers (sdk/9.1)
    Python (3.8.5)

    pip==20.3.3
    setuptools==51.0.0
    packaging==20.8
    numpy==1.19.4
    opencv-python==4.4.0.46
    scipy==1.5.4
    matplotlib==3.3.3
    pandas==1.1.5
    notebook==6.1.5
    scikit-learn==0.23.2
    scikit-image==0.18.0
    albumentations==0.5.2
    Cython==0.29.21
    Pillow==8.0.1
    trafaret-config==2.0.2
    pyzmq==20.0.0
    librosa==0.8.0
    psutil==5.8.0
    pydantic==1.7.3
    requests==2.25.1

    pytorch

    PyTorch, torchvision, Apex and torch based libraries.
    ghcr.io/osai-ai/dokai:20.12-pytorch

    dokai:20.12-pytorch

    additionally to dokai:20.12-base:

    torch==1.7.1 (source, v1.7.1 tag)
    torchvision==0.8.2 (source, v0.8.2 tag)
    pytorch-argus==0.2.0
    timm==0.3.2
    kornia==0.4.1
    apex (source, master branch)

    tensor-stream

    Tensor Stream.
    ghcr.io/osai-ai/dokai:20.12-tensor-stream

    dokai:20.12-tensor-stream

    additionally to dokai:20.12-pytorch:

    tensor-stream==0.4.6 (source, dev branch)

    Source code(tar.gz)
    Source code(zip)
  • v20.10(Oct 22, 2020)

    New features

    • pydantic
    • requests

    Fix

    • Build Tensor Stream for lower cuDNN versions 3.7+PTX;5.0;6.0;6.1;7.0;7.5

    Images

    base

    Python with ML and CV packages, CUDA, FFmpeg with NVENC support.
    ghcr.io/osai-ai/dokai:20.10-base

    dokai:20.10-base

    FFmpeg (release/4.3), nv-codec-headers (sdk/9.1)
    Python (3.6.9)

    pip==20.2.4
    setuptools==50.3.2
    packaging==20.4
    numpy==1.19.2
    opencv-python==4.4.0.44
    scipy==1.5.3
    matplotlib==3.3.2
    pandas==1.1.3
    notebook==6.1.4
    scikit-learn==0.23.2
    scikit-image==0.17.2
    albumentations==0.5.0
    Cython==0.29.21
    Pillow==8.0.0
    trafaret-config==2.0.2
    pyzmq==19.0.2
    librosa==0.8.0
    psutil==5.7.2
    dataclasses==0.7
    pydantic==1.6.1
    requests==2.24.0

    pytorch

    PyTorch, torchvision, Apex and torch based libraries.
    ghcr.io/osai-ai/dokai:20.10-pytorch

    dokai:20.10-pytorch

    additionally to dokai:20.10-base:

    torch==1.6.0
    torchvision==0.7.0
    pytorch-argus==0.1.2
    timm==0.2.1
    apex (master)

    tensor-stream

    Tensor Stream.
    ghcr.io/osai-ai/dokai:20.10-tensor-stream

    dokai:20.10-tensor-stream

    additionally to dokai:20.10-pytorch:

    tensor-stream==0.4.6 (dev)

    Source code(tar.gz)
    Source code(zip)
  • v20.09(Sep 29, 2020)

    base

    Python with ML and CV packages, CUDA, FFmpeg with NVENC support.
    ghcr.io/osai-ai/dokai:20.09-base

    dokai:20.09-base

    FFmpeg (release/4.3), nv-codec-headers (sdk/9.1)
    Python (3.6.9)

    pip==20.2.3
    setuptools==50.3.0
    packaging==20.4
    numpy==1.19.2
    opencv-python==4.4.0.42
    scipy==1.5.2
    matplotlib==3.3.2
    pandas==1.1.2
    notebook==6.1.4
    scikit-learn==0.23.2
    scikit-image==0.17.2
    albumentations==0.4.6
    Cython==0.29.21
    Pillow==7.2.0
    trafaret-config==2.0.2
    pyzmq==19.0.2
    librosa==0.8.0
    psutil==5.7.2
    dataclasses==0.7

    pytorch

    PyTorch, torchvision, Apex and torch based libraries.
    ghcr.io/osai-ai/dokai:20.09-pytorch

    dokai:20.09-pytorch

    additionally to dokai:20.09-base:

    torch==1.6.0
    torchvision==0.7.0
    pytorch-argus==0.1.2
    timm==0.2.1
    apex (master)

    tensor-stream

    Tensor Stream.
    ghcr.io/osai-ai/dokai:20.09-tensor-stream

    dokai:20.09-tensor-stream

    additionally to dokai:20.09-pytorch:

    tensor-stream==0.4.6 (dev)

    Source code(tar.gz)
    Source code(zip)
Owner
OSAI
OSAI is developing automatic systems that help to analyze a game and provide real-time game data with Computer Vision and AI in Sports.
OSAI
Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentation"

Hyper-Convolution Networks for Biomedical Image Segmentation Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentatio

Tianyu Ma 17 Nov 02, 2022
Graph InfoClust: Leveraging cluster-level node information for unsupervised graph representation learning

Graph-InfoClust-GIC [PAKDD 2021] PAKDD'21 version Graph InfoClust: Maximizing Coarse-Grain Mutual Information in Graphs Preprint version Graph InfoClu

Costas Mavromatis 21 Dec 03, 2022
A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Monte Carlo Simulation to the Paper A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Sören Kohnert 0 Dec 06, 2021
This project contains an implemented version of Face Detection using OpenCV and Mediapipe. This is a code snippet and can be used in projects.

Live-Face-Detection Project Description: In this project, we will be using the live video feed from the camera to detect Faces. It will also detect so

Hassan Shahzad 3 Oct 02, 2021
BDDM: Bilateral Denoising Diffusion Models for Fast and High-Quality Speech Synthesis

Bilateral Denoising Diffusion Models (BDDMs) This is the official PyTorch implementation of the following paper: BDDM: BILATERAL DENOISING DIFFUSION M

172 Dec 23, 2022
PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders: A PyTorch Implementation This is a PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners: @

Meta Research 4.8k Jan 04, 2023
Segmentation vgg16 fcn - cityscapes

VGGSegmentation Segmentation vgg16 fcn - cityscapes Priprema skupa skripta prepare_dataset_downsampled.py Iz slika cityscapesa izrezuje haubu automobi

6 Oct 24, 2020
Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation

Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation By Qiang Zhou*, Zilong Huang*, Lichao Huang, Han Shen, Yon

Forest 117 Apr 01, 2022
Official code of ICCV2021 paper "Residual Attention: A Simple but Effective Method for Multi-Label Recognition"

CSRA This is the official code of ICCV 2021 paper: Residual Attention: A Simple But Effective Method for Multi-Label Recoginition Demo, Train and Vali

163 Dec 22, 2022
Code and data (Incidents Dataset) for ECCV 2020 Paper "Detecting natural disasters, damage, and incidents in the wild".

Incidents Dataset See the following pages for more details: Project page: IncidentsDataset.csail.mit.edu. ECCV 2020 Paper "Detecting natural disasters

Ethan Weber 67 Dec 27, 2022
Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation".

FPS-Net Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation", accepted by ISPRS journal of Photogrammetry

15 Nov 30, 2022
Aerial Imagery dataset for fire detection: classification and segmentation (Unmanned Aerial Vehicle (UAV))

Aerial Imagery dataset for fire detection: classification and segmentation using Unmanned Aerial Vehicle (UAV) Title FLAME (Fire Luminosity Airborne-b

79 Jan 06, 2023
Agent-based model simulator for air quality and pandemic risk assessment in architectural spaces

Agent-based model simulation for air quality and pandemic risk assessment in architectural spaces. User Guide archABM is a fast and open source agent-

Vicomtech 10 Dec 05, 2022
Hummingbird compiles trained ML models into tensor computation for faster inference.

Hummingbird Introduction Hummingbird is a library for compiling trained traditional ML models into tensor computations. Hummingbird allows users to se

Microsoft 3.1k Dec 30, 2022
Deep Watershed Transform for Instance Segmentation

Deep Watershed Transform Performs instance level segmentation detailed in the following paper: Min Bai and Raquel Urtasun, Deep Watershed Transformati

193 Nov 20, 2022
Robust & Reliable Route Recommendation on Road Networks

NeuroMLR: Robust & Reliable Route Recommendation on Road Networks This repository is the official implementation of NeuroMLR: Robust & Reliable Route

4 Dec 20, 2022
SCU OlympicsRunning Baseline

Competition 1v1 running Environment check details in Jidi Competition RLChina2021智能体竞赛 做出的修改: 奖励重塑:修改了环境,重新设置了奖励的分配,使得奖励组成不只有零和博弈,还有探索环境的奖励。 算法微调:修改了官

ZiSeoi Wong 2 Nov 23, 2021
A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

70 Jul 12, 2022
[ICCV 2021] Deep Hough Voting for Robust Global Registration

Deep Hough Voting for Robust Global Registration, ICCV, 2021 Project Page | Paper | Video Deep Hough Voting for Robust Global Registration Junha Lee1,

57 Nov 28, 2022