TargetAllDomainObjects - A python wrapper to run a command on against all users/computers/DCs of a Windows Domain

Overview

TargetAllDomainObjects

A python wrapper to run a command on against all users/computers/DCs of a Windows Domain
GitHub release (latest by date)

Features

  • Automatically gets the list of all users/computers/DCs from the domain controller's LDAP.
  • Multithreaded command execution.
  • Saves the output of the commands to a file.

Usage

$ ./TargetAllDomainObjects.py -h          
Impacket v0.9.25.dev1+20220105.151306.10e53952 - Copyright 2021 SecureAuth Corporation

usage: TargetAllDomainObjects.py [-h] -c COMMAND [-ts] [--use-ldaps] [-q] [-debug] [-colors] [-t THREADS] [-o OUTPUT_FILE] --dc-ip ip address [-d DOMAIN]
                                 [-u USER] [--no-pass | -p PASSWORD | -H [LMHASH:]NTHASH | --aes-key hex key] [-k]
                                 targetobject

Wrapper to run a command on against all users/computers/DCs of a Windows Domain.

positional arguments:
  targetobject          Target object (user, computer, domaincontroller)

optional arguments:
  -h, --help            show this help message and exit
  -c COMMAND, --command COMMAND
                        Command to launch, with {target} where the target should be placed.
  -ts                   Adds timestamp to every logging output
  --use-ldaps           Use LDAPS instead of LDAP
  -q, --quiet           show no information at all
  -debug                Debug mode
  -colors               Colored output mode
  -t THREADS, --threads THREADS
                        Number of threads (default: 5)
  -o OUTPUT_FILE, --output-file OUTPUT_FILE
                        Output file to store the results in. (default: shares.json)

authentication & connection:
  --dc-ip ip address    IP Address of the domain controller or KDC (Key Distribution Center) for Kerberos. If omitted it will use the domain part (FQDN)
                        specified in the identity parameter
  -d DOMAIN, --domain DOMAIN
                        (FQDN) domain to authenticate to
  -u USER, --user USER  user to authenticate with

  --no-pass             Don't ask for password (useful for -k)
  -p PASSWORD, --password PASSWORD
                        Password to authenticate with
  -H [LMHASH:]NTHASH, --hashes [LMHASH:]NTHASH
                        NT/LM hashes, format is LMhash:NThash
  --aes-key hex key     AES key to use for Kerberos Authentication (128 or 256 bits)
  -k, --kerberos        Use Kerberos authentication. Grabs credentials from .ccache file (KRB5CCNAME) based on target parameters. If valid credentials
                        cannot be found, it will use the ones specified in the command line
                      

Demo

Contributing

Pull requests are welcome. Feel free to open an issue if you want to add other features.

You might also like...
A Pytorch Implementation of [Source data‐free domain adaptation of object detector through domain

A Pytorch Implementation of Source data‐free domain adaptation of object detector through domain‐specific perturbation Please follow Faster R-CNN and

Fake-user-agent-traffic-geneator - Python CLI Tool to generate fake traffic against URLs with configurable user-agents
Fake-user-agent-traffic-geneator - Python CLI Tool to generate fake traffic against URLs with configurable user-agents

Fake traffic generator for Gartner Demo Generate fake traffic to URLs with custo

Code for the paper: Adversarial Training Against Location-Optimized Adversarial Patches. ECCV-W 2020.

Adversarial Training Against Location-Optimized Adversarial Patches arXiv | Paper | Code | Video | Slides Code for the paper: Sukrut Rao, David Stutz,

Protect against subdomain takeover
Protect against subdomain takeover

domain-protect scans Amazon Route53 across an AWS Organization for domain records vulnerable to takeover deploy to security audit account scan your en

A certifiable defense against adversarial examples by training neural networks to be provably robust
A certifiable defense against adversarial examples by training neural networks to be provably robust

DiffAI v3 DiffAI is a system for training neural networks to be provably robust and for proving that they are robust. The system was developed for the

Defending graph neural networks against adversarial attacks (NeurIPS 2020)
Defending graph neural networks against adversarial attacks (NeurIPS 2020)

GNNGuard: Defending Graph Neural Networks against Adversarial Attacks Authors: Xiang Zhang ([email protected]), Marinka Zitnik ([email protected].

G-NIA model from
G-NIA model from "Single Node Injection Attack against Graph Neural Networks" (CIKM 2021)

Single Node Injection Attack against Graph Neural Networks This repository is our Pytorch implementation of our paper: Single Node Injection Attack ag

RL-driven agent playing tic-tac-toe on starknet against challengers.

tictactoe-on-starknet RL-driven agent playing tic-tac-toe on starknet against challengers. GUI reference: https://pythonguides.com/create-a-game-using

Cards Against Humanity AI

cah-ai This is a Cards Against Humanity AI implemented using a pre-trained Semantic Search model. How it works A player is described by a combination

Releases(1.1)
Owner
Podalirius
Security Researcher 🕵️‍♂️ | Speaker 📣
Podalirius
[CVPR 2022] PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision (Oral)

PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision Kehong Gong*, Bingbing Li*, Jianfeng Zhang*, Ta

256 Dec 28, 2022
[内测中]前向式Python环境快捷封装工具,快速将Python打包为EXE并添加CUDA、NoAVX等支持。

QPT - Quick packaging tool 快捷封装工具 GitHub主页 | Gitee主页 QPT是一款可以“模拟”开发环境的多功能封装工具,最短只需一行命令即可将普通的Python脚本打包成EXE可执行程序,并选择性添加CUDA和NoAVX的支持,尽可能兼容更多的用户环境。 感觉还可

QPT Family 545 Dec 28, 2022
Reimplement of SimSwap training code

SimSwap-train Reimplement of SimSwap training code Instructions 1.Environment Preparation (1)Refer to the README document of SIMSWAP to configure the

seeprettyface.com 111 Dec 31, 2022
Voice control for Garry's Mod

WIP: Talonvoice GMod integrations Very work in progress voice control demo for Garry's Mod. HOWTO Install https://talonvoice.com/ Press https://i.imgu

Meta Construct 5 Nov 15, 2022
Simple ONNX operation generator. Simple Operation Generator for ONNX.

sog4onnx Simple ONNX operation generator. Simple Operation Generator for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools Key concept V

Katsuya Hyodo 6 May 15, 2022
Dilated RNNs in pytorch

PyTorch Dilated Recurrent Neural Networks PyTorch implementation of Dilated Recurrent Neural Networks (DilatedRNN). Getting Started Installation: $ pi

Zalando Research 200 Nov 17, 2022
10th place solution for Google Smartphone Decimeter Challenge at kaggle.

Under refactoring 10th place solution for Google Smartphone Decimeter Challenge at kaggle. Google Smartphone Decimeter Challenge Global Navigation Sat

12 Oct 25, 2022
An offline deep reinforcement learning library

d3rlpy: An offline deep reinforcement learning library d3rlpy is an offline deep reinforcement learning library for practitioners and researchers. imp

Takuma Seno 817 Jan 02, 2023
Neural Network to colorize grayscale images

#colornet Neural Network to colorize grayscale images Results Grayscale Prediction Ground Truth Eiji K used colornet for anime colorization Sources Au

Pavel Hanchar 3.6k Dec 24, 2022
SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP

scdlpicker SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP Objective This is a simple deep learning (DL) repicker module

Joachim Saul 6 May 13, 2022
ETMO: Evolutionary Transfer Multiobjective Optimization

ETMO: Evolutionary Transfer Multiobjective Optimization To promote the research on ETMO, benchmark problems are of great importance to ETMO algorithm

Songbai Liu 0 Mar 16, 2021
Tiny Kinetics-400 for test

Kinetics-400迷你数据集 English | 简体中文 该数据集旨在解决的问题:参照Kinetics-400数据格式,训练基于自己数据的视频理解模型。 数据集介绍 Kinetics-400是视频领域benchmark常用数据集,详细介绍可以参考其官方网站Kinetics。整个数据集包含40

38 Jan 06, 2023
FocusFace: Multi-task Contrastive Learning for Masked Face Recognition

FocusFace This is the official repository of "FocusFace: Multi-task Contrastive Learning for Masked Face Recognition" accepted at IEEE International C

Pedro Neto 21 Nov 17, 2022
This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf

Behavior-Sequence-Transformer-Pytorch This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf This model

Jaime Ferrando Huertas 83 Jan 05, 2023
CoMoGAN: continuous model-guided image-to-image translation. CVPR 2021 oral.

CoMoGAN: Continuous Model-guided Image-to-Image Translation Official repository. Paper CoMoGAN: continuous model-guided image-to-image translation [ar

166 Dec 31, 2022
Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator

DRL-robot-navigation Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator. Using Twin Delayed Deep Deterministic Policy Gra

87 Jan 07, 2023
Perfect implement. Model shared. x0.5 (Top1:60.646) and 1.0x (Top1:69.402).

Shufflenet-v2-Pytorch Introduction This is a Pytorch implementation of faceplusplus's ShuffleNet-v2. For details, please read the following papers:

423 Dec 07, 2022
Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)

Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB) Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dez

3 Nov 19, 2022
Source code for the NeurIPS 2021 paper "On the Second-order Convergence Properties of Random Search Methods"

Second-order Convergence Properties of Random Search Methods This repository the paper "On the Second-order Convergence Properties of Random Search Me

Adamos Solomou 0 Nov 13, 2021
YOLOv5 detection interface - PyQt5 implementation

所有代码已上传,直接clone后,运行yolo_win.py即可开启界面。 2021/9/29:加入置信度选择 界面是在ultralytics的yolov5基础上建立的,界面使用pyqt5实现,内容较简单,娱乐而已。 功能: 模型选择 本地文件选择(视频图片均可) 开关摄像头

487 Dec 27, 2022