pandas, scikit-learn, xgboost and seaborn integration

Overview

pandas-ml

Latest Docs https://travis-ci.org/pandas-ml/pandas-ml.svg?branch=master

Overview

pandas, scikit-learn and xgboost integration.

Installation

$ pip install pandas_ml

Documentation

http://pandas-ml.readthedocs.org/en/stable/

Example

>>> import pandas_ml as pdml
>>> import sklearn.datasets as datasets

# create ModelFrame instance from sklearn.datasets
>>> df = pdml.ModelFrame(datasets.load_digits())
>>> type(df)
<class 'pandas_ml.core.frame.ModelFrame'>

# binarize data (features), not touching target
>>> df.data = df.data.preprocessing.binarize()
>>> df.head()
   .target  0  1  2  3  4  5  6  7  8 ...  54  55  56  57  58  59  60  61  62  63
0        0  0  0  1  1  1  1  0  0  0 ...   0   0   0   0   1   1   1   0   0   0
1        1  0  0  0  1  1  1  0  0  0 ...   0   0   0   0   0   1   1   1   0   0
2        2  0  0  0  1  1  1  0  0  0 ...   1   0   0   0   0   1   1   1   1   0
3        3  0  0  1  1  1  1  0  0  0 ...   1   0   0   0   1   1   1   1   0   0
4        4  0  0  0  1  1  0  0  0  0 ...   0   0   0   0   0   1   1   1   0   0
[5 rows x 65 columns]

# split to training and test data
>>> train_df, test_df = df.model_selection.train_test_split()

# create estimator (accessor is mapped to sklearn namespace)
>>> estimator = df.svm.LinearSVC()

# fit to training data
>>> train_df.fit(estimator)

# predict test data
>>> test_df.predict(estimator)
0     4
1     2
2     7
...
448    5
449    8
Length: 450, dtype: int64

# Evaluate the result
>>> test_df.metrics.confusion_matrix()
Predicted   0   1   2   3   4   5   6   7   8   9
Target
0          52   0   0   0   0   0   0   0   0   0
1           0  37   1   0   0   1   0   0   3   3
2           0   2  48   1   0   0   0   1   1   0
3           1   1   0  44   0   1   0   0   3   1
4           1   0   0   0  43   0   1   0   0   0
5           0   1   0   0   0  39   0   0   0   0
6           0   1   0   0   1   0  35   0   0   0
7           0   0   0   0   2   0   0  42   1   0
8           0   2   1   0   1   0   0   0  33   1
9           0   2   1   2   0   0   0   0   1  38

Supported Packages

  • scikit-learn
  • patsy
  • xgboost
Comments
  • Fixed imports of deprecated modules which were removed in pandas 0.24.0

    Fixed imports of deprecated modules which were removed in pandas 0.24.0

    Certain functions were deprecated in a previous version of pandas and moved to a different module (see #117). This PR fixes the imports of those functions.

    opened by kristofve 8
  • REL: v0.4.0

    REL: v0.4.0

    • [x] Compat/test for sklearn 0.18.0 (#81)
      • [x] initial fix (#81)
      • [x] wrapper for cross validation classes (re-enable skipped tests) (#85)
      • [x] tests for multioutput (#86)
      • [x] Update doc
    • [x] Compat/test for pandas 0.19.0 (#83)
    • [x] Update release note (#88)
    opened by sinhrks 4
  • Importation error

    Importation error

    I tried to import pandas_ml but it gave the error :

    AttributeError: type object 'NDFrame' has no attribute 'groupby'

    I'm running python3.8.1 and I installed pandas_ml via pip (version 20.0.2)

    I dig in the code, error is l.80 of file series.py

    @Appender(pd.core.generic.NDFrame.groupby.__doc__)

    Here pandas is imported at the top of the file with a classic import pandas as pd

    I guess there is a problem with the versions...

    Thanks in advance for any help

    opened by ierezell 2
  • Confusion Matrix no accessible

    Confusion Matrix no accessible

    Hi,

    I've been using confusion_matrix since it was an independent package. I've installed pandas_ml to continue using the package, but it seems that the setup.py script does not install the package.

    Could it be an issue with the find_packages function?

    opened by mmartinortiz 2
  • Seaborn Scatterplot matrix / pairplot integration

    Seaborn Scatterplot matrix / pairplot integration

    import seaborn as sns
    sns.set()
    
    df = sns.load_dataset("iris")
    sns.pairplot(df, hue="species")
    

    displays

    iris_scatter_matrix

    but pairplot doesn't work the same way with ModelFrame

    import pandas as pd
    pd.set_option('max_rows', 10)
    import sklearn.datasets as datasets
    import pandas_ml as pdml  # https://github.com/pandas-ml/pandas-ml
    import seaborn as sns
    import matplotlib.pyplot as plt
    df = pdml.ModelFrame(datasets.load_iris())
    sns.pairplot(df, hue=".target")
    

    iris_modelframe

    There is some useless subplots

    opened by scls19fr 2
  • Error while running train.py from speech commands in tensorflow examples.

    Error while running train.py from speech commands in tensorflow examples.

    Have the following error: File "train.py", line 27, in <module> from callbacks import ConfusionMatrixCallback File "/home/tesseract/ayush_workspace/NLP/WakeWord/tensorflow_trainer/ml/callbacks.py", line 21, in <module> from pandas_ml import ConfusionMatrix File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/__init__.py", line 3, in <module> from pandas_ml.core import ModelFrame, ModelSeries # noqa File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/core/__init__.py", line 3, in <module> from pandas_ml.core.frame import ModelFrame # noqa File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/core/frame.py", line 18, in <module> from pandas_ml.core.series import ModelSeries File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/core/series.py", line 11, in <module> class ModelSeries(ModelTransformer, pd.Series): File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/core/series.py", line 80, in ModelSeries @Appender(pd.core.generic.NDFrame.groupby.__doc__) AttributeError: type object 'NDFrame' has no attribute 'groupby' Happening with both version 5 and 6.1

    opened by ayush7 1
  • error for example https://pandas-ml.readthedocs.io/en/latest/xgboost.html

    error for example https://pandas-ml.readthedocs.io/en/latest/xgboost.html

    code from example https://pandas-ml.readthedocs.io/en/latest/xgboost.html '''import pandas_ml as pdml import sklearn.datasets as datasets df = pdml.ModelFrame(datasets.load_digits()) train_df, test_df = df.cross_validation.train_test_split() estimator = df.xgboost.XGBClassifier() train_df.fit(estimator) predicted = test_df.predict(estimator) q=1 test_df.metrics.confusion_matrix() train_df.xgboost.plot_importance()

    tuned_parameters = [{'max_depth': [3, 4]}] cv = df.grid_search.GridSearchCV(df.xgb.XGBClassifier(), tuned_parameters, cv=5)

    df.fit(cv) df.grid_search.describe(cv) q=1

    '''

    gives error ''' File "E:\Pandas\my_code\S_pandas_ml_feb27.py", line 10, in train_df.xgboost.plot_importance() File "C:\Users\sndr\Anaconda3\Lib\site-packages\pandas_ml\xgboost\base.py", line 61, in plot_importance return xgb.plot_importance(self._df.estimator.booster(),

    builtins.TypeError: 'str' object is not callable ''' I use Windows and 3.6.4 |Anaconda, Inc.| (default, Jan 16 2018, 10:22:32) [MSC v.1900 64 bit (AMD64)] Python Type "help", "copyright", "credits" or "license" for more information.

    opened by Sandy4321 1
  • pandas 0.24.0 has deprecated pandas.util.decorators

    pandas 0.24.0 has deprecated pandas.util.decorators

    See https://pandas.pydata.org/pandas-docs/stable/whatsnew/v0.24.0.html#deprecations

    This causes the import statement in https://github.com/pandas-ml/pandas-ml/blob/master/pandas_ml/core/frame.py to break.

    Looks like just need to change it to 'from pandas.utils'

    opened by usul83 1
  • 'mean_absoloute_error

    'mean_absoloute_error

    from sklearn import metrics print('MAE:',metrics.mean_absoloute_error(y_test,y_pred)) module 'sklearn.metrics' has no attribute 'mean_absoloute_error This error is occurred..any solution

    opened by vikramk1507 0
  • AttributeError: type object 'NDFrame' has no attribute 'groupby'

    AttributeError: type object 'NDFrame' has no attribute 'groupby'

    AttributeError: type object 'NDFrame' has no attribute 'groupby'

    from pandas_ml import ConfusionMatrix cm = ConfusionMatrix(actu, pred) cm.print_stats()


    AttributeError Traceback (most recent call last) in ----> 1 from pandas_ml import confusion_matrix 2 3 cm = ConfusionMatrix(actu, pred) 4 cm.print_stats()

    /usr/local/lib/python3.8/site-packages/pandas_ml/init.py in 1 #!/usr/bin/env python 2 ----> 3 from pandas_ml.core import ModelFrame, ModelSeries # noqa 4 from pandas_ml.tools import info # noqa 5 from pandas_ml.version import version as version # noqa

    /usr/local/lib/python3.8/site-packages/pandas_ml/core/init.py in 1 #!/usr/bin/env python 2 ----> 3 from pandas_ml.core.frame import ModelFrame # noqa 4 from pandas_ml.core.series import ModelSeries # noqa

    /usr/local/lib/python3.8/site-packages/pandas_ml/core/frame.py in 16 from pandas_ml.core.accessor import _AccessorMethods 17 from pandas_ml.core.generic import ModelPredictor, _shared_docs ---> 18 from pandas_ml.core.series import ModelSeries 19 20

    /usr/local/lib/python3.8/site-packages/pandas_ml/core/series.py in 9 10 ---> 11 class ModelSeries(ModelTransformer, pd.Series): 12 """ 13 Wrapper for pandas.Series to support sklearn.preprocessing

    /usr/local/lib/python3.8/site-packages/pandas_ml/core/series.py in ModelSeries() 78 return df 79 ---> 80 @Appender(pd.core.generic.NDFrame.groupby.doc) 81 def groupby(self, by=None, axis=0, level=None, as_index=True, sort=True, 82 group_keys=True, squeeze=False):

    AttributeError: type object 'NDFrame' has no attribute 'groupby'

    opened by gfranco008 5
  • AttributeError: module 'sklearn.metrics' has no attribute 'jaccard_similarity_score'

    AttributeError: module 'sklearn.metrics' has no attribute 'jaccard_similarity_score'

    I am using scikit-learn version 0.23.1 and I get the following error: AttributeError: module 'sklearn.metrics' has no attribute 'jaccard_similarity_score' when calling the function ConfusionMatrix.

    opened by petraknovak 11
  • Error while running train.py from speech commands in tensorflow examples. AttributeError: type object 'NDFrame' has no attribute 'groupby'

    Error while running train.py from speech commands in tensorflow examples. AttributeError: type object 'NDFrame' has no attribute 'groupby'

    Have the following error: File "train.py", line 27, in <module> from callbacks import ConfusionMatrixCallback File "/home/tesseract/ayush_workspace/NLP/WakeWord/tensorflow_trainer/ml/callbacks.py", line 21, in <module> from pandas_ml import ConfusionMatrix File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/__init__.py", line 3, in <module> from pandas_ml.core import ModelFrame, ModelSeries # noqa File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/core/__init__.py", line 3, in <module> from pandas_ml.core.frame import ModelFrame # noqa File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/core/frame.py", line 18, in <module> from pandas_ml.core.series import ModelSeries File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/core/series.py", line 11, in <module> class ModelSeries(ModelTransformer, pd.Series): File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/core/series.py", line 80, in ModelSeries @Appender(pd.core.generic.NDFrame.groupby.__doc__) AttributeError: type object 'NDFrame' has no attribute 'groupby' Happening with both version 5 and 6.1

    opened by ayush7 3
  • Pandas 1.0.0rc0/0.6.1 module 'sklearn.preprocessing' has no attribute 'Imputer'

    Pandas 1.0.0rc0/0.6.1 module 'sklearn.preprocessing' has no attribute 'Imputer'

    SKLEARN

    sklearn.preprocessing.Imputer Warning DEPRECATED

    class sklearn.preprocessing.Imputer(*args, **kwargs)[source] Imputation transformer for completing missing values.

    Read more in the User Guide.

    
    ---------------------------------------------------------------------------
    AttributeError                            Traceback (most recent call last)
    <ipython-input-1-e0471065d85c> in <module>
          1 import pandas as pd
          2 import numpy as np
    ----> 3 import pandas_ml as pdml
          4 a1 = np.random.randint(0,2,size=(100,2))
          5 df = pd.DataFrame(a1,columns=['i1','i2'])
    
    C:\g\test\lib\pandas_ml\__init__.py in <module>
          1 #!/usr/bin/env python
          2 
    ----> 3 from pandas_ml.core import ModelFrame, ModelSeries       # noqa
          4 from pandas_ml.tools import info                         # noqa
          5 from pandas_ml.version import version as __version__     # noqa
    
    C:\g\test\lib\pandas_ml\core\__init__.py in <module>
          1 #!/usr/bin/env python
          2 
    ----> 3 from pandas_ml.core.frame import ModelFrame       # noqa
          4 from pandas_ml.core.series import ModelSeries     # noqa
    
    C:\g\test\lib\pandas_ml\core\frame.py in <module>
          8 
          9 import pandas_ml.imbaccessors as imbaccessors
    ---> 10 import pandas_ml.skaccessors as skaccessors
         11 import pandas_ml.smaccessors as smaccessors
         12 import pandas_ml.snsaccessors as snsaccessors
    
    C:\g\test\lib\pandas_ml\skaccessors\__init__.py in <module>
         17 from pandas_ml.skaccessors.neighbors import NeighborsMethods                      # noqa
         18 from pandas_ml.skaccessors.pipeline import PipelineMethods                        # noqa
    ---> 19 from pandas_ml.skaccessors.preprocessing import PreprocessingMethods              # noqa
         20 from pandas_ml.skaccessors.svm import SVMMethods                                  # noqa
    
    C:\g\test\lib\pandas_ml\skaccessors\preprocessing.py in <module>
         11     _keep_col_classes = [pp.Binarizer,
         12                          pp.FunctionTransformer,
    ---> 13                          pp.Imputer,
         14                          pp.KernelCenterer,
         15                          pp.LabelEncoder,
    
    AttributeError: module 'sklearn.preprocessing' has no attribute 'Imputer'
    
    opened by apiszcz 11
Releases(v0.6.1)
Python implementation of the rulefit algorithm

RuleFit Implementation of a rule based prediction algorithm based on the rulefit algorithm from Friedman and Popescu (PDF) The algorithm can be used f

Christoph Molnar 326 Jan 02, 2023
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022
Price forecasting of SGB and IRFC Bonds and comparing there returns

Project_Bonds Project Title : Price forecasting of SGB and IRFC Bonds and comparing there returns. Introduction of the Project The 2008-09 global fina

Tishya S 1 Oct 28, 2021
ClearML - Auto-Magical Suite of tools to streamline your ML workflow. Experiment Manager, MLOps and Data-Management

ClearML - Auto-Magical Suite of tools to streamline your ML workflow Experiment Manager, MLOps and Data-Management ClearML Formerly known as Allegro T

ClearML 4k Jan 09, 2023
ML Kaggle Titanic Problem using LogisticRegrission

-ML-Kaggle-Titanic-Problem-using-LogisticRegrission here you will find the solution for the titanic problem on kaggle with comments and step by step c

Mahmoud Nasser Abdulhamed 3 Oct 23, 2022
A collection of Machine Learning Models To Web Api which are built on open source technologies/frameworks like Django, Flask.

Author Ibrahim Koné From-Machine-Learning-Models-To-WebAPI A collection of Machine Learning Models To Web Api which are built on open source technolog

Ibrahim Koné 2 May 24, 2022
Greykite: A flexible, intuitive and fast forecasting library

The Greykite library provides flexible, intuitive and fast forecasts through its flagship algorithm, Silverkite.

LinkedIn 1.7k Jan 04, 2023
An open-source library of algorithms to analyse time series in GPU and CPU.

An open-source library of algorithms to analyse time series in GPU and CPU.

Shapelets 216 Dec 30, 2022
A library to generate synthetic time series data by easy-to-use factors and generator

timeseries-generator This repository consists of a python packages that generates synthetic time series dataset in a generic way (under /timeseries_ge

Nike Inc. 87 Dec 20, 2022
GroundSeg Clustering Optimized Kdtree

ground seg and clustering based on kitti velodyne data, and a additional optimized kdtree for knn and radius nn search

2 Dec 02, 2021
A data preprocessing package for time series data. Design for machine learning and deep learning.

A data preprocessing package for time series data. Design for machine learning and deep learning.

Allen Chiang 152 Jan 07, 2023
Iris species predictor app is used to classify iris species created using python's scikit-learn, fastapi, numpy and joblib packages.

Iris Species Predictor Iris species predictor app is used to classify iris species using their sepal length, sepal width, petal length and petal width

Siva Prakash 5 Apr 05, 2022
李航《统计学习方法》复现

本项目复现李航《统计学习方法》每一章节的算法 特点: 笔记摘要:在每个文件开头都会有一些核心的摘要 pythonic:这里会用尽可能规范的方式来实现,包括编程风格几乎严格按照PEP8 循序渐进:前期的算法会更list的方式来做计算,可读性比较强,后期几乎完全为numpy.array的计算,并且辅助详

58 Oct 22, 2021
Made in collaboration with Chris George for Art + ML Spring 2019.

Deepdream Eyes Made in collaboration with Chris George for Art + ML Spring 2019.

Francisco Cabrera 1 Jan 12, 2022
MLBox is a powerful Automated Machine Learning python library.

MLBox is a powerful Automated Machine Learning python library. It provides the following features: Fast reading and distributed data preprocessing/cle

Axel 1.4k Jan 06, 2023
Python factor analysis library (PCA, CA, MCA, MFA, FAMD)

Prince is a library for doing factor analysis. This includes a variety of methods including principal component analysis (PCA) and correspondence anal

Max Halford 915 Dec 31, 2022
A python library for easy manipulation and forecasting of time series.

Time Series Made Easy in Python darts is a python library for easy manipulation and forecasting of time series. It contains a variety of models, from

Unit8 5.2k Jan 04, 2023
pywFM is a Python wrapper for Steffen Rendle's factorization machines library libFM

pywFM pywFM is a Python wrapper for Steffen Rendle's libFM. libFM is a Factorization Machine library: Factorization machines (FM) are a generic approa

João Ferreira Loff 251 Sep 23, 2022
An MLOps framework to package, deploy, monitor and manage thousands of production machine learning models

Seldon Core: Blazing Fast, Industry-Ready ML An open source platform to deploy your machine learning models on Kubernetes at massive scale. Overview S

Seldon 3.5k Jan 01, 2023
GAM timeseries modeling with auto-changepoint detection. Inspired by Facebook Prophet and implemented in PyMC3

pm-prophet Pymc3-based universal time series prediction and decomposition library (inspired by Facebook Prophet). However, while Faceook prophet is a

Luca Giacomel 314 Dec 25, 2022