Alternatives to Deep Neural Networks for Function Approximations in Finance

Related tags

Deep Learningaltnnpub
Overview

Alternatives to Deep Neural Networks for Function Approximations in Finance

Code companion repo

Overview

This is a repository of Python code to go with our paper whose details could be found below

We provide our implementations of the generalized stochastic sampling (gSS) and functional Tensor Train (fTT) algorithms from the paper, and related routines. This is a somewhat simplified version of the code that produced the test results that we reported. Simplifications were made to improve clarity and increase general didactic value, at a (small) expense of cutting out some of the secondary tricks and variations.

The code is released under the MIT License

Installing the code

You do not have to install this package once you have downloaded it -- see the next section on how to use it without any installation. But if you want to call our routines from a different project or directory, execute the following (note you need to run this from altnnpub directory, assuming this is the root of the project directory -- the directory where this file that you are reading is located)

altnnpub>pip install -e .

Then you can call various methods from your code like this

from nnu import gss_kernels
kernel = gss_kernels.global_kernel_dict(1.0)['invquad']
...

to uninstall the package, run (from anywhere)

blah>pip uninstall altnnpub

Running the code

The main entry point to the code is main.py in ./nnu folder. Assuming the project directory is called altnnpub, the code is run via Python module syntax

altnnpub>python -m nnu.main

Various options such as which functions to fit, which models to use, and so on can be set in main.py

Results are reported in the terminal and are also stored in ./results directory

All of our (non-test) Python code is in ./nnu directory

Jupyter notebooks

We provide a number of notebooks that demonstrate, at varying levels of detail, how to build and use certain models

  • ftt_als_01.ipynb: Functional Tensor Train (fTT) approximation using the Alternating Least Squares (ALS) algorithm
  • functional_2D_low_rank_01.ipynb: Low-rank functional approximation of 2D functions done manually. This is an illustrative example of ALS applied to calculate successive rank-1 approximations, as described in the paper
  • gss_example_keras_direct_01.ipynb: Create and test the generalized Stochastic Sampling (gSS) model. In this notebook do it "by hand", ie using granular interfaces such as the Keras functional interface. Here we create a hidim version of the model with the Adam optimizer for the frequency bounds (aka scales) and linear regression for the outer (linear) weights
  • gss_example_model_factory_01.ipynb: Create and test the generalized Stochastic Sampling (gSS) model. This notebook uses gss_model_factory and other higher-level interfaces that the main entry point (./nnu/main.py) eventually calls. We create a onedim version of the model with a one-dim optimizer for the frequency bounds (aka scales) and linear regression for the outer (linear) weights

Test suite

Unit tests are collected in ./test directory and provide useful examples of how different parts of the code can be used. The test suite can be run in the standard Python way using pytest, e.g. from the comamnd line at the project root directory:

altnnpub>pytest

Pytest is installed with pip install pytest command

Individual tests can be run using a pytest -k test_blah type command, which could be useful for debugging. This is all very well explained in pytest documentation

Tests are there predominantly to show how to call certain functions. They mostly test that the code simply runs rather than testing numbers, etc. except for tests in test_gss_report_generator.py where actual fitting results are compared to the expected ones. Tests produce various output that could be interesting to see -- option pytest -s will print out whatever the tests are printing out

Requirements

The code has been tested with Python 3.7 and 3.8. See requirements.txt for required packages

Contacting us

Our contact details are in the SSRN link below

Details of the paper

Antonov, Alexandre and Piterbarg, Vladimir, Alternatives to Deep Neural Networks for Function Approximations in Finance (November 7, 2021). Available at SSRN: https://ssrn.com/abstract=3958331 or http://dx.doi.org/10.2139/ssrn.3958331

Recurrent Neural Network Tutorial, Part 2 - Implementing a RNN in Python and Theano

Please read the blog post that goes with this code! Jupyter Notebook Setup System Requirements: Python, pip (Optional) virtualenv To start the Jupyter

Denny Britz 863 Dec 15, 2022
TransPrompt - Towards an Automatic Transferable Prompting Framework for Few-shot Text Classification

TransPrompt This code is implement for our EMNLP 2021's paper 《TransPrompt:Towards an Automatic Transferable Prompting Framework for Few-shot Text Cla

WangJianing 23 Dec 21, 2022
Pytorch re-implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text Recognition (CVPR 2022)

SwinTextSpotter This is the pytorch implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text R

mxin262 183 Jan 03, 2023
Neural Scene Flow Prior (NeurIPS 2021 spotlight)

Neural Scene Flow Prior Xueqian Li, Jhony Kaesemodel Pontes, Simon Lucey Will appear on Thirty-fifth Conference on Neural Information Processing Syste

Lilac Lee 85 Jan 03, 2023
It's a powerful version of linebot

CTPS-FINAL Linbot-sever.py 主程式 Algorithm.py 推薦演算法,媒合餐廳端資料與顧客端資料 config.ini 儲存 channel-access-token、channel-secret 資料 Preface 生活在成大將近4年,我們每天的午餐時間看著形形色色

1 Oct 17, 2022
Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Real-ESRGAN Colab Demo for Real-ESRGAN . Portable Windows executable file. You can find more information here. Real-ESRGAN aims at developing Practica

Xintao 17.2k Jan 02, 2023
This repository contains PyTorch code for Robust Vision Transformers.

This repository contains PyTorch code for Robust Vision Transformers.

117 Dec 07, 2022
Repository for the COLING 2020 paper "Explainable Automated Fact-Checking: A Survey."

Explainable Fact Checking: A Survey This repository and the accompanying webpage contain resources for the paper "Explainable Fact Checking: A Survey"

Neema Kotonya 42 Nov 17, 2022
Official implementation of MSR-GCN (ICCV 2021 paper)

MSR-GCN Official implementation of MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction (ICCV 2021 paper) [Paper] [Sup

LevonDang 42 Nov 07, 2022
A python module for scientific analysis of 3D objects based on VTK and Numpy

A lightweight and powerful python module for scientific analysis and visualization of 3d objects.

Marco Musy 1.5k Jan 06, 2023
This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian Sign Language.

LIBRAS-Image-Classifier This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian

Aryclenio Xavier Barros 26 Oct 14, 2022
Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21).

ACTION-Net Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21). Getting Started EgoGesture data folder struct

V-Sense 171 Dec 26, 2022
ML models implementation practice

Let's implement various ML algorithms with numpy/tf Vanilla Neural Network https://towardsdatascience.com/lets-code-a-neural-network-in-plain-numpy-ae

Jinsoo Heo 4 Jul 04, 2021
一个多模态内容理解算法框架,其中包含数据处理、预训练模型、常见模型以及模型加速等模块。

Overview 架构设计 插件介绍 安装使用 框架简介 方便使用,支持多模态,多任务的统一训练框架 能力列表: bert + 分类任务 自定义任务训练(插件注册) 框架设计 框架采用分层的思想组织模型训练流程。 DATA 层负责读取用户数据,根据 field 管理数据。 Parser 层负责转换原

Tencent 265 Dec 22, 2022
Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images (ICCV 2021)

Table of Content Introduction Getting Started Datasets Installation Experiments Training & Testing Pretrained models Texture fine-tuning Demo Toward R

VinAI Research 42 Dec 05, 2022
The official repo for CVPR2021——ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search.

ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search [paper] Introduction This is the official implementation of ViPNAS: Efficient V

Lumin 42 Sep 26, 2022
PyTorch module to use OpenFace's nn4.small2.v1.t7 model

OpenFace for Pytorch Disclaimer: This codes require the input face-images that are aligned and cropped in the same way of the original OpenFace. * I m

Pete Tae-hoon Kim 176 Dec 12, 2022
PyTorch code of my ICDAR 2021 paper Vision Transformer for Fast and Efficient Scene Text Recognition (ViTSTR)

Vision Transformer for Fast and Efficient Scene Text Recognition (ICDAR 2021) ViTSTR is a simple single-stage model that uses a pre-trained Vision Tra

Rowel Atienza 198 Dec 27, 2022
code for generating data set ES-ImageNet with corresponding training code

es-imagenet-master code for generating data set ES-ImageNet with corresponding training code dataset generator some codes of ODG algorithm The variabl

Ordinarabbit 18 Dec 25, 2022
ZEBRA: Zero Evidence Biometric Recognition Assessment

ZEBRA: Zero Evidence Biometric Recognition Assessment license: LGPLv3 - please reference our paper version: 2020-06-11 author: Andreas Nautsch (EURECO

Voice Privacy Challenge 2 Dec 12, 2021