Official code repository for the work: "The Implicit Values of A Good Hand Shake: Handheld Multi-Frame Neural Depth Refinement"

Related tags

Deep LearningHNDR
Overview

Handheld Multi-Frame Neural Depth Refinement

This is the official code repository for the work: The Implicit Values of A Good Hand Shake: Handheld Multi-Frame Neural Depth Refinement .

If you use parts of this work, or otherwise take inspiration from it, please considering citing our paper:

@article{chugunov2021implicit,
  title={The Implicit Values of A Good Hand Shake: Handheld Multi-Frame Neural Depth Refinement},
  author={Chugunov, Ilya and Zhang, Yuxuan and Xia, Zhihao and Zhang, Cecilia and Chen, Jiawen and Heide, Felix},
  journal={arXiv preprint arXiv:2111.13738},
  year={2021}
}

Requirements:

  • Developed using PyTorch 1.10.0 on Linux x64 machine
  • Condensed package requirements are in \requirements.txt. Note that this contains the package versions at the time of publishing, if you update to, for example, a newer version of PyTorch you will need to watch out for changes in class/function calls

Data:

  • Download data from this Google Drive link and unpack into the \data folder
  • Each folder corresponds to a scene [castle, eagle, elephant, frog, ganesha, gourd, rocks, thinker] and contains four files.
    • model.pt is the frozen, trained MLP corresponding to the scene
    • frame_bundle.npz is the recorded bundle data (images, depth, and poses)
    • reprojected_lidar.npy is the merged LiDAR depth baseline as described in the paper
    • snapshot.mp4 is a video of the recorded snapshot for visualization purposes

An explanation of the format and contents of the frame bundles (frame_bundle.npz) is given in an interactive format in \0_data_format.ipynb. We recommend you go through this jupyter notebook before you record your own bundles or otherwise manipulate the data.

Project Structure:

HNDR
  ├── checkpoints  
  │   └── // folder for network checkpoints
  ├── data  
  │   └── // folder for recorded bundle data
  ├── utils  
  │   ├── dataloader.py  // dataloader class for bundle data
  │   ├── neural_blocks.py  // MLP blocks and positional encoding
  │   └── utils.py  // miscellaneous helper functions (e.g. grid/patch sample)
  ├── 0_data_format.ipynb  // interactive tutorial for understanding bundle data
  ├── 1_reconstruction.ipynb  // interactive tutorial for depth reconstruction
  ├── model.py  // the learned implicit depth model
  │             // -> reproject points, query MLP for offsets, visualization
  ├── README.md  // a README in the README, how meta
  ├── requirements.txt  // frozen package requirements
  ├── train.py  // wrapper class for arg parsing and setting up training loop
  └── train.sh  // example script to run training

Reconstruction:

The jupyter notebook \1_reconstruction.ipynb contains an interactive tutorial for depth reconstruction: loading a model, loading a bundle, generating depth.

Training:

The script \train.sh demonstrates a basic call of \train.py to train a model on the gourd scene data. It contains the arguments

  • checkpoint_path - path to save model and tensorboard checkpoints
  • device - device for training [cpu, cuda]
  • bundle_path - path to the bundle data

For other training arguments, see the argument parser section of \train.py.

Best of luck,
Ilya

Speech Emotion Recognition with Fusion of Acoustic- and Linguistic-Feature-Based Decisions

APSIPA-SER-with-A-and-T This code is the implementation of Speech Emotion Recognition (SER) with acoustic and linguistic features. The network model i

kenro515 3 Jan 04, 2023
This is a collection of all challenges in HKCERT CTF 2021

香港網絡保安新生代奪旗挑戰賽 2021 (HKCERT CTF 2021) This is a collection of all challenges (and writeups) in HKCERT CTF 2021 Challenges ID Chinese name Name Score S

10 Jan 27, 2022
Implementation for "Exploiting Aliasing for Manga Restoration" (CVPR 2021)

[CVPR Paper](To appear) | [Project Website](To appear) | BibTex Introduction As a popular entertainment art form, manga enriches the line drawings det

133 Dec 15, 2022
Pytorch implementation of AREL

Status: Archive (code is provided as-is, no updates expected) Agent-Temporal Attention for Reward Redistribution in Episodic Multi-Agent Reinforcement

8 Nov 25, 2022
OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework

OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework Introduction OpenFed is a foundational library for federated learning

25 Dec 12, 2022
Bayesian Generative Adversarial Networks in Tensorflow

Bayesian Generative Adversarial Networks in Tensorflow This repository contains the Tensorflow implementation of the Bayesian GAN by Yunus Saatchi and

Andrew Gordon Wilson 1k Nov 29, 2022
Code for the paper "Adversarial Generator-Encoder Networks"

This repository contains code for the paper "Adversarial Generator-Encoder Networks" (AAAI'18) by Dmitry Ulyanov, Andrea Vedaldi, Victor Lempitsky. Pr

Dmitry Ulyanov 279 Jun 26, 2022
J.A.R.V.I.S is an AI virtual assistant made in python.

J.A.R.V.I.S is an AI virtual assistant made in python. Running JARVIS Without Python To run JARVIS without python: 1. Head over to our installation pa

somePythonProgrammer 16 Dec 29, 2022
A library for uncertainty representation and training in neural networks.

Epistemic Neural Networks A library for uncertainty representation and training in neural networks. Introduction Many applications in deep learning re

DeepMind 211 Dec 12, 2022
Wider or Deeper: Revisiting the ResNet Model for Visual Recognition

ademxapp Visual applications by the University of Adelaide In designing our Model A, we did not over-optimize its structure for efficiency unless it w

Zifeng Wu 338 Dec 12, 2022
Quadruped-command-tracking-controller - Quadruped command tracking controller (flat terrain)

Quadruped command tracking controller (flat terrain) Prepare Install RAISIM link

Yunho Kim 4 Oct 20, 2022
Bulk2Space is a spatial deconvolution method based on deep learning frameworks

Bulk2Space Spatially resolved single-cell deconvolution of bulk transcriptomes using Bulk2Space Bulk2Space is a spatial deconvolution method based on

Dr. FAN, Xiaohui 60 Dec 27, 2022
Contextualized Perturbation for Textual Adversarial Attack, NAACL 2021

Contextualized Perturbation for Textual Adversarial Attack Introduction This is a PyTorch implementation of Contextualized Perturbation for Textual Ad

cookielee77 30 Jan 01, 2023
Transferable Unrestricted Attacks, which won 1st place in CVPR’21 Security AI Challenger: Unrestricted Adversarial Attacks on ImageNet.

Transferable Unrestricted Adversarial Examples This is the PyTorch implementation of the Arxiv paper: Towards Transferable Unrestricted Adversarial Ex

equation 16 Dec 29, 2022
This tutorial repository is to introduce the functionality of KGTK to first-time users

Welcome to the KGTK notebook tutorial The goal of this tutorial repository is to introduce the functionality of KGTK to first-time users. The Knowledg

USC ISI I2 58 Dec 21, 2022
Diffusion Normalizing Flow (DiffFlow) Neurips2021

Diffusion Normalizing Flow (DiffFlow) Reproduce setup environment The repo heavily depends on jam, a personal toolbox developed by Qsh.zh. The API may

76 Jan 01, 2023
TensorFlow implementation of AlexNet and its training and testing on ImageNet ILSVRC 2012 dataset

AlexNet training on ImageNet LSVRC 2012 This repository contains an implementation of AlexNet convolutional neural network and its training and testin

Matteo Dunnhofer 161 Nov 25, 2022
DeepDiffusion: Unsupervised Learning of Retrieval-adapted Representations via Diffusion-based Ranking on Latent Feature Manifold

DeepDiffusion Introduction This repository provides the code of the DeepDiffusion algorithm for unsupervised learning of retrieval-adapted representat

4 Nov 15, 2022
A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor

Phase-SLAM A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor This open source is written by MATLAB Run Mode Open

Xi Zheng 14 Dec 19, 2022
68 keypoint annotations for COFW test data

68 keypoint annotations for COFW test data This repository contains manually annotated 68 keypoints for COFW test data (original annotation of CFOW da

31 Dec 06, 2022