Princeton NLP's pre-training library based on fairseq with DeepSpeed kernel integration 🚃

Overview


This repository provides a library for efficient training of masked language models (MLM), built with fairseq. We fork fairseq to give researchers more flexibility when using our training scripts, while also making it easier to adapt our code contributions into other projects.

Why DinkyTrain?

The Dinky runs between Princeton Junction and Princeton and is the shortest scheduled commuter rail line in the United States. We also aim to make pre-training short and accessible to everyone.

Our Contributions

  • DeepSpeed transformer kernel integration
  • A training recipe for efficient MLM pre-training
  • An easy-to-follow guideline of using fairseq for MLM pre-training.

Other fairseq features:

See the fairseq repo and its documentation for more details on how to use and extend fairseq.

DinkyTrain for Efficient MLM Pre-training

Quick Links

Overview

You can reproduce the pre-training experiments of our recent paper Should You Mask 15% in Masked Language Modeling?, where we find that higher masking rates can lead to more efficient pre-training.

Installation

  • PyTorch version >= 1.5.0
  • Python version >= 3.6
  • To install fairseq and develop locally:
git clone https://github.com/pytorch/fairseq
cd fairseq
pip install --editable ./
  • For faster training (FP16) install NVIDIA's apex library:
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" \
  --global-option="--deprecated_fused_adam" --global-option="--xentropy" \
  --global-option="--fast_multihead_attn" ./
  • For faster training (DeepSpeed cuda kernel) install DeepSpeed library and compile the DeepSpeed kernel
DS_BUILD_TRANSFORMER=1 DS_BUILD_STOCHASTIC_TRANSFORMER=1 pip install deepspeed
  • For large datasets install PyArrow: pip install pyarrow
  • If you use Docker make sure to increase the shared memory size either with --ipc=host or --shm-size as command line options to nvidia-docker run .

Trouble-shooting:

  • If using lower version of Python, you might encounter import problems with importlib.metadata. Try pip install importlib-metadata.
  • To install apex and deepspeed, you will need nvcc (CUDA compiler).
  • When installing apex, if you encounter the error Cuda extensions are bing compiled with a version of Cuda that does not match ..., go to setup.py and comment out the line that raised the error (at your own risk).
  • Both apex and deepspeed installation require a high gcc version to support c++14. If you encounter relevant errors, update your gcc.

Data Pre-processing

Tokenization: First, download the GPT2 BPE vocabulary:

wget -O gpt2_bpe/encoder.json https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json
wget -O gpt2_bpe/vocab.bpe https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe

Then, tokenize your raw data:

python -m examples.roberta.multiprocessing_bpe_encoder \
    --encoder-json gpt2_bpe/encoder.json \
    --vocab-bpe gpt2_bpe/vocab.bpe \
    --inputs ${SPLIT}.raw \
    --outputs ${SPLIT}.bpe \
    --keep-empty \
    --workers 8

Finally, index and binarize your data:

fairseq-preprocess \
    --only-source \
    --srcdict gpt2_bpe/dict.txt \
    --trainpref ${TRAIN_SPLIT}.bpe \
    --validpref ${VALID_SPLIT}.bpe \
    --testpref ${TEST_SPLIT}.bpe \
    --destdir output-bin \
    --workers 8

Alternatively: Use our pre-processed data: We preprocessed Wikipedia+BookCorpus and shared it on Huggingface dataset. It is ~22GB and contains two epochs of data, each epoch being sliced into 8 shards. You can download it using git:

git lfs install # Git lfs is needed for downloading
git clone https://huggingface.co/datasets/princeton-nlp/wikibook_fairseq_format

Pre-training

Use our script for efficient pre-training

GPU={number of GPUs} DATA_DIR={data path} [DEEPSPEED=1] bash run_efficient_mlm_recipe.sh

Flags explained

  • GPU: number of GPUs.
  • DATA_DIR: directory to the processed pre-training data. If you are using our preprocessed dataset, DATA_DIR should be:
DATA_DIR=$(seq 0 15 | sed -e 's/^/wikibook_fairseq_format\/bin-shard/' | sed -e 's/$/-8/' | paste -sd ':')
  • DEEPSPEED (optional): if set to 1, the DeepSpeed CUDA kernel will be used.

Please refer to the script for more hyperparameter choices.

Fine-tuning on GLUE and SQuAD

All our checkpoints can be converted to HuggingFace transformers models (see next nextion) and use the transformers package for fine-tuning. Fairseq also supports fine-tuning on GLUE.

First, download the preprocessed GLUE data (you can also process by yourself following the preprocess section above):

git lfs install # Git lfs is needed for downloading
git clone https://huggingface.co/datasets/princeton-nlp/glue_fairseq_format

Then use the following script for fine-tuning

DATA_DIR={path to the data directory} \
TASK={glue task name (mnli qnli qqp rte sst2 mrpc cola stsb)} \
LR={learning rate} \
BSZ={batch size} \
EPOCHS={number of epochs} \
SEED={random seed} \
CKPT_DIR={checkpoint's directory} \
CKPT_NAME={checkpoint's name} \
[DEEPSPEED=1] bash finetune_glue.sh

For fine-tuning on SQuAD, please convert the models to HuggingFace checkpoints following the next section and use HuggingFace's examples.

Convert to HuggingFace

We also provide conversion codes so that you can easily turn Fairseq checkpoints into HuggingFace checkpoints. Usage:

cd scripts
[PRELAYERNORM=1] [FROM_DS=1] python convert_fs_ckpt_to_hf_ckpt.py --fr {fairseq checkpoint} --to {huggingface checkpoint path} --hf_model_config {roberta-base/roberta-large}

Flags explained:

  • PRELAYERNORM=1: Using pre layer-norm (default is post layer-norm).
  • FROM_DS=1: The Fairseq checkpoint uses DeepSpeed's cuda kernel.
  • --fr: The path to the Fairseq checkpoint.
  • --to: The path you want to save the HuggingFace checkpoint to.
  • --hf_model_config: roberta-base or roberta-large.

IMPORTANT: all our models use pre layer norm, which is not supported by HuggingFace yet. To use it, import the model class from huggingface/modeling_roberta_prelayernorm.py. For example:

from huggingface.modeling_roberta_prelayernorm import RobertaForSequenceClassification

For more configuration, please refer to convert_fs_ckpt_to_hf_ckpt.py.

Model List

Here are the HuggingFace checkpoints of our models in the paper Should You Mask 15% in Masked Language Modeling. Results are development set performance.

Model MNLI QNLI QQP SST-2
princeton-nlp/efficient_mlm_m0.15 84.2 90.9 87.8 93.3
princeton-nlp/efficient_mlm_m0.20 84.1 91.3 87.9 92.7
princeton-nlp/efficient_mlm_m0.30 84.2 91.6 88.0 93.0
princeton-nlp/efficient_mlm_m0.40 84.5 91.6 88.1 92.8
princeton-nlp/efficient_mlm_m0.50 84.1 91.1 88.1 92.7
princeton-nlp/efficient_mlm_m0.60 83.2 90.7 87.8 92.6
princeton-nlp/efficient_mlm_m0.70 82.3 89.4 87.5 91.9
princeton-nlp/efficient_mlm_m0.80 80.8 87.9 87.1 90.5
princeton-nlp/efficient_mlm_m0.15-801010 83.7 90.4 87.8 93.2
princeton-nlp/efficient_mlm_m0.40-801010 84.3 91.2 87.9 93.0

We also offer the original (deepspeed) fairseq checkpoints here.

Bugs or Questions?

If you hav an questions, or encounter any problems when using the code, or want to report a bug, you can open an issue. Please try to specify the problem with details so we can help you better and quicker!

Citation

@article{wettig2022should,
   title={Should You Mask 15% in Masked Language Modeling?},
   author={Wettig, Alexander and Gao, Tianyu and Zhong, Zexuan and Chen, Danqi},
   boo={arXiv preprint arXiv:2202.08005},
   year={2022}
}

Acknowledgment

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and Michael Auli. 2019. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations), pages 48–53.

  • Our efficient training recipe is based on the following paper:

Peter Izsak, Moshe Berchansky, and Omer Levy. 2021. How to train BERT with an academic budget. In Empirical Methods in Natural Language Processing (EMNLP), pages 10644–10652.

Owner
Princeton Natural Language Processing
Princeton Natural Language Processing
AutoGluon: AutoML for Text, Image, and Tabular Data

AutoML for Text, Image, and Tabular Data AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in yo

Amazon Web Services - Labs 5.2k Dec 29, 2022
Paradigm Shift in NLP - "Paradigm Shift in Natural Language Processing".

Paradigm Shift in NLP Welcome to the webpage for "Paradigm Shift in Natural Language Processing". Some resources of the paper are constantly maintaine

Tianxiang Sun 41 Dec 30, 2022
结巴中文分词

jieba “结巴”中文分词:做最好的 Python 中文分词组件 "Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation

Sun Junyi 29.8k Jan 02, 2023
This repository contains the code for running the character-level Sandwich Transformers from our ACL 2020 paper on Improving Transformer Models by Reordering their Sublayers.

Improving Transformer Models by Reordering their Sublayers This repository contains the code for running the character-level Sandwich Transformers fro

Ofir Press 53 Sep 26, 2022
Code for Editing Factual Knowledge in Language Models

KnowledgeEditor Code for Editing Factual Knowledge in Language Models (https://arxiv.org/abs/2104.08164). @inproceedings{decao2021editing, title={Ed

Nicola De Cao 86 Nov 28, 2022
Espial is an engine for automated organization and discovery of personal knowledge

Live Demo (currently not running, on it) Espial is an engine for automated organization and discovery in knowledge bases. It can be adapted to run wit

Uzay-G 159 Dec 30, 2022
GSoC'2021 | TensorFlow implementation of Wav2Vec2

GSoC'2021 | TensorFlow implementation of Wav2Vec2

Vasudev Gupta 73 Nov 28, 2022
Sequence model architectures from scratch in PyTorch

This repository implements a variety of sequence model architectures from scratch in PyTorch. Effort has been put to make the code well structured so that it can serve as learning material. The train

Brando Koch 11 Mar 28, 2022
Faster, modernized fork of the language identification tool langid.py

py3langid py3langid is a fork of the standalone language identification tool langid.py by Marco Lui. Original license: BSD-2-Clause. Fork license: BSD

Adrien Barbaresi 12 Nov 05, 2022
EMNLP'2021: Can Language Models be Biomedical Knowledge Bases?

BioLAMA BioLAMA is biomedical factual knowledge triples for probing biomedical LMs. The triples are collected and pre-processed from three sources: CT

DMIS Laboratory - Korea University 41 Nov 18, 2022
The entmax mapping and its loss, a family of sparse softmax alternatives.

entmax This package provides a pytorch implementation of entmax and entmax losses: a sparse family of probability mappings and corresponding loss func

DeepSPIN 330 Dec 22, 2022
This is the writeup of all the challenges from Advent-of-cyber-2019 of TryHackMe

Advent-of-cyber-2019-writeup This is the writeup of all the challenges from Advent-of-cyber-2019 of TryHackMe https://tryhackme.com/shivam007/badges/c

shivam danawale 5 Jul 17, 2022
Continuously update some NLP practice based on different tasks.

NLP_practice We will continuously update some NLP practice based on different tasks. prerequisites Software pytorch = 1.10 torchtext = 0.11.0 sklear

0 Jan 05, 2022
NLP Text Classification

多标签文本分类任务 近年来随着深度学习的发展,模型参数的数量飞速增长。为了训练这些参数,需要更大的数据集来避免过拟合。然而,对于大部分NLP任务来说,构建大规模的标注数据集非常困难(成本过高),特别是对于句法和语义相关的任务。相比之下,大规模的未标注语料库的构建则相对容易。为了利用这些数据,我们可以

Jason 1 Nov 11, 2021
原神抽卡记录数据集-Genshin Impact gacha data

提要 持续收集原神抽卡记录中 可以使用抽卡记录导出工具导出抽卡记录的json,将json文件发送至[email protected],我会在清除个人信息后

117 Dec 27, 2022
Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models.

Tevatron Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models. The toolkit has a modularized

texttron 193 Jan 04, 2023
This is a MD5 password/passphrase brute force tool

CROWES-PASS-CRACK-TOOl This is a MD5 password/passphrase brute force tool How to install: Do 'git clone https://github.com/CROW31/CROWES-PASS-CRACK-TO

9 Mar 02, 2022
Code for using and evaluating SpanBERT.

SpanBERT This repository contains code and models for the paper: SpanBERT: Improving Pre-training by Representing and Predicting Spans. If you prefer

Meta Research 798 Dec 30, 2022
Longformer: The Long-Document Transformer

Longformer Longformer and LongformerEncoderDecoder (LED) are pretrained transformer models for long documents. ***** New December 1st, 2020: Longforme

AI2 1.6k Dec 29, 2022
Image2pcl - Enter the metaverse with 2D image to 3D projections

Image2PCL Enter the metaverse with 2D image to 3D projections! This is an implem

Benjamin Ho 0 Feb 05, 2022