PyTorch wrappers for using your model in audacity!

Overview

audacitorch

This package contains utilities for prepping PyTorch audio models for use in Audacity. More specifically, it provides abstract classes for you to wrap your waveform-to-waveform and waveform-to-labels models (see the Deep Learning for Audacity website to learn more about deep learning models for audacity).

Table of Contents


img

Download Audacity with Deep Learning

Our work has not yet been merged to the main build of Audacity, though it will be soon. You can keep track of its progress by viewing our pull request. In the meantime, you can download an alpha version of Audacity + Deep Learning here.

Installing

You can install audacitorch using pip:

pip install -e "git+https://github.com/hugofloresgarcia/audacitorch.git#egg=audacitorch"

Contributing Models to Audacity

Supported Torch versions

audacitorch requires for your model to be able to run in Torch 1.9.0, as that's what the Audacity torchscript interpreter uses.

Deep Learning Effect and Analyzer

Audacity is equipped with a wrapper framework for deep learning models written in PyTorch. Audacity contains two deep learning tools: Deep Learning Effect and Deep Learning Analyzer.
Deep Learning Effect performs waveform to waveform processing, and is useful for audio-in-audio-out tasks (such as source separation, voice conversion, style transfer, amplifier emulation, etc.), while Deep Learning Analyzer performs waveform to labels processing, and is useful for annotation tasks (such as sound event detection, musical instrument recognition, automatic speech recognition, etc.). audacitorch contains two abstract classes for serializing two types of models: waveform-to-waveform and waveform-to-labels. The classes are WaveformToWaveformBase, and WaveformToLabelsBase, respectively.

Choosing an Effect Type

Waveform to Waveform models

As shown in the effect diagram, Waveform-to-waveform models receive a single multichannel audio track as input, and may write to a variable number of new audio tracks as output.

Example models for waveform-to-waveform effects include source separation, neural upsampling, guitar amplifier emulation, generative models, etc. Output tensors for waveform-to-waveform models must be multichannel waveform tensors with shape (num_output_channels, num_samples). For every audio waveform in the output tensor, a new audio track is created in the Audacity project.

Waveform to Labels models

As shown in the effect diagram, Waveform-to-labels models receive a single multichannel audio track as input, and may write to an output label track as output. The waveform-to-labels effect can be used for many audio analysis applications, such as voice activity detection, sound event detection, musical instrument recognition, automatic speech recognition, etc. The output for waveform-to-labels models must be a tuple of two tensors. The first tensor corresponds to the class indexes for each label present in the waveform, shape (num_timesteps,). The second tensor must contain timestamps with start and stop times for each label, shape (num_timesteps, 2).

What If My Model Uses a Spectrogram as Input/Output?

If your model uses a spectrogram as input/output, you'll need to wrap your forward pass with some torchscript-compatible preprocessing/postprocessing. We recommend using torchaudio, writing your own preprocessing transforms in their own nn.Module, or writing your PyTorch-only preprocessing and placing it in WaveformToWaveform.do_forward_pass or WaveformToLabels.do_forward_pass. See the compatibility section for more info.

Model Metadata

Certain details about the model, such as its sample rate, tool type (e.g. waveform-to-waveform or waveform-to-labels), list of labels, etc. must be provided by the model contributor in a separate metadata.json file. In order to help users choose the correct model for their required task, model contributors are asked to provide a short and long description of the model, the target domain of the model (e.g. speech, music, environmental, etc.), as well as a list of tags or keywords as part of the metadata. See here for an example metadata dictionary.

Metadata Spec

required fields:

  • sample_rate (int)
    • range (0, 396000)
    • Model sample rate. Input tracks will be resampled to this value.
  • domains (List[str])
    • List of data domains for the model. The list should contain any of the following strings (any others will be ignored): ["music", "speech", "environmental", "other"]
  • short_description(str)
    • max 60 chars
    • short description of the model. should contain a brief message with the model's purpose, e.g. "Use me for separating vocals from the background!".
  • long_description (str)
    • max 280 chars
    • long description of the model. Shown in the detailed view of the model UI.
  • tags (List[str])
    • list of tags (to be shown in the detailed view)
    • each tag should be 15 characters max
    • max 5 tags per model.
  • labels (List[str)
    • output labels for the model. Depending on the effect type, this field means different things
    • waveform-to-waveform
      • name of each output source (e.g. drums, bass, vocal). To create the track name for each output source, each one of the labels will be appended to the mixture track's name.
    • waveform-to-labels:
      • This should be classlist for model. The class indexes output by the model during a forward pass will be used to index into this classlist.
  • effect_type (str)
    • Target effect for this model. Must be one of ["waveform-to-waveform", "waveform-to-labels"].
  • multichannel (bool)
    • If multichannel is set to true, stereo tracks are passed to the model as multichannel audio tensors, with shape (2, n). Note that this means that the input could either be a mono track with shape (1, n) or stereo track with shape (2, n).
    • If multichannel is set to false, stereo tracks are downmixed, meaning that the input audio tensor will always be shape (1, n).

Making Your Model Built-In To Audacity

By default, users have to click on the Add From HuggingFace button on the Audacity Model Manager and enter the desired repo's ID to install a community contributed model. If you, instead, would like your community contributed model to show up in Audacity's Model Manager by default, please open a request here.

Example - Waveform-to-Waveform model

Here's a minimal example for a model that simply boosts volume by multiplying the incoming audio by a factor of 2.

We can sum up the whole process into 4 steps:

  1. Developing your model
  2. Wrapping your model using audacitorch
  3. Creating a metadata document
  4. Exporting to HuggingFace

Developing your model

First, we create our model. There are no internal constraints on what the internal model architecture should be, as long as you can use torch.jit.script or torch.jit.trace to serialize it, and it is able to meet the input-output constraints specified in waveform-to-waveform and waveform-to-labels models.

import torch
import torch.nn as nn

class MyVolumeModel(nn.Module):

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        # do the neural net magic!
        x = x * 2

        return x

Making sure your model is compatible with torchscript

PyTorch makes it really easy to deploy your Python models in C++ by using torchscript, an intermediate representation format for torch models that can be called in C++. Many of Python's built-in functions are supported by torchscript. However, not all Python operations are supported by the torchscript environment, meaning that you are only allowed to use a subset of Python operations in your model code. See the torch.jit docs to learn more about writing torchscript-compatible code.

If your model computes spectrograms (or requires any kind of preprocessing/postprocessing), make sure those operations are compatible with torchscript, like torchaudio's operation set.

Useful links:

Wrapping your model using audacitorch

Now, we create a wrapper class for our model. Because our model returns an audio waveform as output, we'll use WaveformToWaveformBase as our parent class. For both WaveformToWaveformBase and WaveformToLabelsBase, we need to implement the do_forward_pass method with our processing code. See the docstrings for more details.

from audacitorch import WaveformToWaveformBase

class MyVolumeModelWrapper(WaveformToWaveformBase):
    
    def do_forward_pass(self, x: torch.Tensor) -> torch.Tensor:
        
        # do any preprocessing here! 
        # expect x to be a waveform tensor with shape (n_channels, n_samples)

        output = self.model(x)

        # do any postprocessing here!
        # the return value should be a multichannel waveform tensor with shape (n_channels, n_samples)
    
        return output

Creating a metadata document

Audacity models need a metadata file. See the metadata spec to learn about the required fields.

metadata = {
    'sample_rate': 48000, 
    'domain_tags': ['music', 'speech', 'environmental'],
    'short_description': 'Use me to boost volume by 3dB :).',
    'long_description':  'This description can be a max of 280 characters aaaaaaaaaaaaaaaaaaaa.',
    'tags': ['volume boost'],
    'labels': ['boosted'],
    'effect_type': 'waveform-to-waveform',
    'multichannel': False,
}

All set! We can now proceed to serialize the model to torchscript and save the model, along with its metadata.

from pathlib import Path
from audacitorch.utils import save_model, validate_metadata, \
                              get_example_inputs, test_run

# create a root dir for our model
root = Path('booster-net')
root.mkdir(exist_ok=True, parents=True)

# get our model
model = MyVolumeModel()

# wrap it
wrapper = MyVolumeModelWrapper(model)

# serialize it using torch.jit.script, torch.jit.trace,
# or a combination of both. 

# option 1: torch.jit.script 
# using torch.jit.script is preferred for most cases, 
# but may require changing a lot of source code
serialized_model = torch.jit.script(wrapper)

# option 2: torch.jit.trace
# using torch.jit.trace is typically easier, but you
# need to be extra careful that your serialized model behaves 
# properly after tracing
example_inputs = get_example_inputs()
serialized_model = torch.jit.trace(wrapper, example_inputs[0], 
                                    check_inputs=example_inputs)

# take your model for a test run!
test_run(serialized_model)

# check that we created our metadata correctly
success, msg = validate_metadata(metadata)
assert success

# save!
save_model(serialized_model, metadata, root)

Exporting to HuggingFace

You should now have a directory structure that looks like this:

/booster-net/
/booster-net/model.pt
/booster-net/metadata.json

This will be the repository for your audacity model. Make sure to add a readme with the audacity tag in the YAML metadata, so it show up on the explore tab of Audacity's Deep Learning Tools.

Create a README.md inside booster-net/, and add the following header:

in README.md

---
tags: audacity
---

Awesome! It's time to push to HuggingFace. See their documentation for adding a model to the HuggingFace model hub.

Debugging Your Model in Audacity

After serializing, you may need to debug your model inside Audacity, to make sure that it handles inputs correctly, doesn't crash while processing, and produces the correct output. While debugging, make sure your model isn't available through other users through the Explore HuggingFace button by temporarily removing the audacity tag from your README file. If your model fails internally while processing audio, you may see something like this:

To debug, you can access the error logs through the Help menu, in Help->Diagnostics->Show Log.... Any torchscript errors that may occur during the forward pass will be redirected here.

Example - Exporting a Pretrained Asteroid model

See this example notebook, where we serialize a pretrained ConvTasNet model for speech separation using the Asteroid source separation library.

Example - Exporting a Pretrained S2T model

See this example notebook, where we serialize a pretrained speech to text transformer from Facebook.


Owner
Hugo Flores García
PhD @interactiveaudiolab
Hugo Flores García
Multimodal commodity image retrieval 多模态商品图像检索

Multimodal commodity image retrieval 多模态商品图像检索 Not finished yet... introduce explain:The specific description of the project and the product image dat

hongjie 8 Nov 25, 2022
League of Legends Reinforcement Learning Environment (LoLRLE) multiple training scenarios using PPO.

League of Legends Reinforcement Learning Environment (LoLRLE) About This repo contains code to train an agent to play league of legends in a distribut

2 Aug 19, 2022
Creating Multi Task Models With Keras

Creating Multi Task Models With Keras About The Project! I used the keras and Tensorflow Library, To build a Deep Learning Neural Network to Creating

Srajan Chourasia 4 Nov 28, 2022
This implements one of result networks from Large-scale evolution of image classifiers

Exotic structured image classifier This implements one of result networks from Large-scale evolution of image classifiers by Esteban Real, et. al. Req

54 Nov 25, 2022
Implementation of "Glancing Transformer for Non-Autoregressive Neural Machine Translation"

GLAT Implementation for the ACL2021 paper "Glancing Transformer for Non-Autoregressive Neural Machine Translation" Requirements Python = 3.7 Pytorch

117 Jan 09, 2023
Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations"

Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations" this repository is maintained by bo

Yuhan Liu 24 Nov 29, 2022
Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020

Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020 BibTeX @INPROCEEDINGS{punnappurath2020modeling, author={Abhi

Abhijith Punnappurath 22 Oct 01, 2022
Unofficial PyTorch implementation of the Adaptive Convolution architecture for image style transfer

AdaConv Unofficial PyTorch implementation of the Adaptive Convolution architecture for image style transfer from "Adaptive Convolutions for Structure-

65 Dec 22, 2022
Neural Re-rendering for Full-frame Video Stabilization

NeRViS: Neural Re-rendering for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Yu-Lun Liu 9 Jun 17, 2022
MAGMA - a GPT-style multimodal model that can understand any combination of images and language

MAGMA -- Multimodal Augmentation of Generative Models through Adapter-based Finetuning Authors repo (alphabetical) Constantin (CoEich), Mayukh (Mayukh

Aleph Alpha GmbH 331 Jan 03, 2023
Generative Flow Networks

Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation Implementation for our paper, submitted to NeurIPS 2021 (also chec

Emmanuel Bengio 381 Jan 04, 2023
Fine-grained Post-training for Improving Retrieval-based Dialogue Systems - NAACL 2021

Fine-grained Post-training for Multi-turn Response Selection Implements the model described in the following paper Fine-grained Post-training for Impr

Janghoon Han 83 Dec 20, 2022
JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation

JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation This the repository for this paper. Find extensions of this w

Zhuoyuan Mao 14 Oct 26, 2022
When in Doubt: Improving Classification Performance with Alternating Normalization

When in Doubt: Improving Classification Performance with Alternating Normalization Findings of EMNLP 2021 Menglin Jia, Austin Reiter, Ser-Nam Lim, Yoa

Menglin Jia 13 Nov 06, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Music Source Separation with Channel-wise Subband Phase Aware ResUnet (CWS-PResUNet) Introduction This repo contains the pretrained Music Source Separ

Lau 100 Dec 25, 2022
Efficient Multi Collection Style Transfer Using GAN

Proposed a new model that can make style transfer from single style image, and allow to transfer into multiple different styles in a single model.

Zhaozheng Shen 2 Jan 15, 2022
An inofficial PyTorch implementation of PREDATOR based on KPConv.

PREDATOR: Registration of 3D Point Clouds with Low Overlap An inofficial PyTorch implementation of PREDATOR based on KPConv. The code has been tested

ZhuLifa 14 Aug 03, 2022
Simple machine learning library / 簡單易用的機器學習套件

FukuML Simple machine learning library / 簡單易用的機器學習套件 Installation $ pip install FukuML Tutorial Lesson 1: Perceptron Binary Classification Learning Al

Fukuball Lin 279 Sep 15, 2022
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

    VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain

squaresLab 32 Oct 24, 2022
Human head pose estimation using Keras over TensorFlow.

RealHePoNet: a robust single-stage ConvNet for head pose estimation in the wild.

Rafael Berral Soler 71 Jan 05, 2023