This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset

Overview

HiRID-ICU-Benchmark

This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset for which the manuscript can be found here.

We first introduce key resources to better understand the structure and specificity of the data. We then detail the different features of our pipeline and how to use them as shown in the below figure.

Figure

Key Resources

We build our work on previously released data, models, and metrics. To help users which might be unfamiliar with them we provide in this section some related documentation.

HiRID data

We based our benchmark on a recent dataset in intensive care called HiRID. It is a freely accessible critical care dataset containing data from more than 33,000 patient admissions to the Department of Intensive Care Medicine, Bern University Hospital, Switzerland (ICU) from January 2008 to June 2016. It was first released as part of the circulatory Early Warning Score project.

First, you can find some more details about the demographics of the patients of the data in Appendix A: HiRID Dataset Details. However, for more details about the original data, it's better to refer to its latest documentation . More in detail the documentation contains the following sections of interest:

  • Getting started This first section points to a jupyter notebook to familiarize yourself with the data.
  • Data details This second section contains a description of the variables existing in the dataset. To complete this section you can refer to our varref.tsv which we use to build the common version of the data.
  • Structure of the published data This final section contains details about the structure of the raw data you will have to download and place in hirid-data-root folder (see "Run Pre-Processing").

Models

As for the data, in this benchmark, we compare existing machine learning models that are commonly used for multivariate time-series data. For these models' implementation we use pytorch, for the deep learning models, lightgbm for the boosted tree approaches, and sklearn for the logistic regression model and metrics. In the deep learning models we used the following models:

Metrics

In our benchmark we use different metrics depending on the tasks, however, all the implementations are from sklearn which documents well their usage:

Setup

In the following we assume a Linux installation, however, other platforms may also work

  1. Install Conda, see the official installation instructions
  2. clone this repository and change into the directory of the repository
  3. conda env update (creates an environment icu-benchmark)
  4. pip install -e .

Download Data

  1. Get access to the HiRID 1.1.1 dataset on physionet. This entails
    1. getting a credentialed physionet account
    2. submit a usage request to the data depositor
  2. Once access is granted, download the following files
    1. reference_data.tar.gz
    2. observation_tables_parquet.tar.gz
    3. pharma_records_parquet.tar.gz
  3. unpack the files into the same directory using e.g. cat *.tar.gz | tar zxvf - -i

How to Run

Run Prepocessing

Activate the conda environment using conda activate icu-benchmark. Then

icu-benchmarks preprocess --hirid-data-root [path to unpacked parquet files as downloaded from phyiosnet] \
                          --work-dir [output directory] \
                          --var-ref-path ./preprocessing/resources/varref.tsv \
                          --split-path ./preprocessing/resources/split.tsv \
                          --nr-workers 8

The above command requires about 6GB of RAM per core and in total approximately 30GB of disk space.

Run Training

Custom training

To run a custom training you should, activate the conda environment using conda activate icu-benchmark. Then

icu-benchmarks train -c [path to gin config] \
                     -l [path to logdir] \
                     -t [task name] \
                     -sd [seed number] 

Task name should be one of the following: Mortality_At24Hours, Dynamic_CircFailure_12Hours, Dynamic_RespFailure_12Hours, Dynamic_UrineOutput_2Hours_Reg, Phenotyping_APACHEGroup or Remaining_LOS_Reg.\ To see an example of gin-config file please refer to ./configs/. You can also check directly the gin-config documentation. this will create a new directory [path to logdir]/[task name]/[seed number]/ containing:

  • val_metrics.pkl and test_metrics.pkl: Pickle files with model's performance respectively validation and test sets.
  • train_config.gin: The so-called "operative" config allowing the save the configuration used at training.
  • model.(torch/txt/joblib) : The weights of the model that was trained. The extension depends model type.
  • tensorboard/: (Optional) Directory with tensorboard logs. One can do tensorboard --logdir ./tensorboard to visualize them,

Reproduce experiments from the paper

If you are interested in reproducing the experiments from the paper, you can directly use the pre-built scripts in ./run_scripts/. For instance, you can run the following command to reproduce the GRU baseline on the Mortality task:

sh run_script/baselines/Mortality_At24Hours/GRU.sh

As for custom training, you will create a directory with the files mentioned above. The pre-built scripts are divided into four categories as follows:

  • baselines: This folder contains scripts to reproduce the main benchmark experiment. Each of them will run a model with the best parameters we found using a random search for 10 identical seeds.
  • ablations: This folder contains the scripts to reproduce the ablations studies on the horizon, sequence length, and weighting.
  • random-search: This script will run each one instance of a random search. This means if you want a k-run search you need to run it k times.
  • pretrained: This last type of script allows us to evaluate pretrain models from our experiments. We discuss them more in detail in the next section

Run Evaluation of Pretrained Models

Custom Evaluation

As for training a model, you can evaluate any previously trained model using the evaluate as follows:

icu-benchmarks evaluate -c [path to gin config] \
                        -l [path to logdir] \
                        -t [task name] \

This command will evaluate the model at [path to logdir]/[task name]/model.(torch/txt/joblib) on the test set of the dataset provided in the config. Results are saved to test_metrics.pkl file.

Evaluate Manuscript models

To either check the pre-processing pipeline outcome or simply reproduce the paper results we provided weights for all models of the benchmark experiment in files/pretrained_weights. Please note that the data items in this repository utilize the git-lfs framework. You need to install git-lfs on your system to be able to download and access the pretrained weights.

Once this is done you can evaluate any network by running :

sh ./run_scripts/pretrained/[task name]/[model name].sh

Note that we provide only one set of weights for each model which corresponds to the median performance among the 10 runs reported in the manuscript.

Run Pipeline on Simulated Data

We provide a small toy data set to test the processing pipeline and to get a rough impression how to original data looks like. Since there are restrictions accessing the HiRID data set, instead of publishing a small subset of the data, we generated a very simple simulated dataset based on some statistics aggregated from the full HiRID dataset. It is however not useful for data exploration or training, as for example the values are sampled independently from each other and any structure between variables in the original data set is not represented.

The example data set is provided in files/fake_data. Similar as with the original data, the preprocessing pipeline can be run using

icu-benchmarks preprocess --hirid-data-root files/fake_data --work-dir fake_data_wdir --var-ref-path preprocessing/resources/varref.tsv

Note, that for this fake dataset some models cannot be successfully trained, as the training instances are degenerate. In case you'd like to explore the training part of our pipeline, you could work with pretrained models as described above.

Dataset Generation

The data set was generated using the following command:

python -m icu_benchmarks.synthetic_data.generate_simple_fake_data files/dataset_stats/ files/fake_data/ --var-ref-path preprocessing/resources/varref.tsv

The script generate_simple_fake_data.py generates fake observation and pharma records in the following way: It first generates a series of timestamps where the difference between consecutive timestamps is sampled from the distribution of timestamp differences in the original dataset. Then, for every timestamp, a variableid/pharmaid is selected at random also according to the distribution in the original dataset. Finally, we sample the values of a variable from a gaussian with mean and standard deviation as observed in the original data. We then clip the values to fit the lower and upperbound as given in the varref table.

The necessary statistics for sampling can be found in files/dataset_stats. They were generated using

python -m icu_benchmarks.synthetic_data.collect_stats [Path to the decompressed parquet data directory as published on physionet] files/dataset_stats/

License

You can find the license for the original HiRID data here. For our code we license it under a MIT License

Owner
Biomedical Informatics at ETH Zurich
Biomedical Informatics at ETH Zurich
The source code for Adaptive Kernel Graph Neural Network at AAAI2022

AKGNN The source code for Adaptive Kernel Graph Neural Network at AAAI2022. Please cite our paper if you think our work is helpful to you: @inproceedi

11 Nov 25, 2022
A Closer Look at Reference Learning for Fourier Phase Retrieval

A Closer Look at Reference Learning for Fourier Phase Retrieval This repository contains code for our NeurIPS 2021 Workshop on Deep Learning and Inver

Tobias Uelwer 1 Oct 28, 2021
Fast Differentiable Matrix Sqrt Root

Fast Differentiable Matrix Sqrt Root Geometric Interpretation of Matrix Square Root and Inverse Square Root This repository constains the official Pyt

YueSong 42 Dec 30, 2022
JORLDY an open-source Reinforcement Learning (RL) framework provided by KakaoEnterprise

Repository for Open Source Reinforcement Learning Framework JORLDY

Kakao Enterprise Corp. 330 Dec 30, 2022
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
Official repository for Jia, Raghunathan, Göksel, and Liang, "Certified Robustness to Adversarial Word Substitutions" (EMNLP 2019)

Certified Robustness to Adversarial Word Substitutions This is the official GitHub repository for the following paper: Certified Robustness to Adversa

Robin Jia 38 Oct 16, 2022
A wrapper around SageMaker ML Lineage Tracking extending ML Lineage to end-to-end ML lifecycles, including additional capabilities around Feature Store groups, queries, and other relevant artifacts.

ML Lineage Helper This library is a wrapper around the SageMaker SDK to support ease of lineage tracking across the ML lifecycle. Lineage artifacts in

AWS Samples 12 Nov 01, 2022
A Python library for working with arbitrary-dimension hypercomplex numbers following the Cayley-Dickson construction of algebras.

Hypercomplex A Python library for working with quaternions, octonions, sedenions, and beyond following the Cayley-Dickson construction of hypercomplex

7 Nov 04, 2022
Generate indoor scenes with Transformers

SceneFormer: Indoor Scene Generation with Transformers Initial code release for the Sceneformer paper, contains models, train and test scripts for the

Chandan Yeshwanth 110 Dec 06, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

TUCH This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright License fo

Lea Müller 45 Jan 07, 2023
Car Price Predictor App used to predict the price of the car based on certain input parameters created using python's scikit-learn, fastapi, numpy and joblib packages.

Pricefy Car Price Predictor App used to predict the price of the car based on certain input parameters created using python's scikit-learn, fastapi, n

Siva Prakash 1 May 10, 2022
A pytorch implementation of Reading Wikipedia to Answer Open-Domain Questions.

DrQA A pytorch implementation of the ACL 2017 paper Reading Wikipedia to Answer Open-Domain Questions (DrQA). Reading comprehension is a task to produ

Runqi Yang 394 Nov 08, 2022
Code for "Learning the Best Pooling Strategy for Visual Semantic Embedding", CVPR 2021

Learning the Best Pooling Strategy for Visual Semantic Embedding Official PyTorch implementation of the paper Learning the Best Pooling Strategy for V

Jiacheng Chen 106 Jan 06, 2023
This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Prediction Graph Neural Network Model for Bike Sharing Systems".

cluster-link-prediction This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Predict

Bárbara 0 Dec 28, 2022
Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Neural Networks.

Dynamic-Graphs-Construction Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Ne

11 Dec 14, 2022
Example-custom-ml-block-keras - Custom Keras ML block example for Edge Impulse

Custom Keras ML block example for Edge Impulse This repository is an example on

Edge Impulse 8 Nov 02, 2022
Official implementation for paper Knowledge Bridging for Empathetic Dialogue Generation (AAAI 2021).

Knowledge Bridging for Empathetic Dialogue Generation This is the official implementation for paper Knowledge Bridging for Empathetic Dialogue Generat

Qintong Li 50 Dec 20, 2022
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
Pytorch implementation of COIN, a framework for compression with implicit neural representations 🌸

COIN 🌟 This repo contains a Pytorch implementation of COIN: COmpression with Implicit Neural representations, including code to reproduce all experim

Emilien Dupont 104 Dec 14, 2022
Robot Servers and Server Manager software for robo-gym

robo-gym-server-modules Robot Servers and Server Manager software for robo-gym. For info on how to use this package please visit the robo-gym website

JR ROBOTICS 4 Aug 16, 2021